Skip to content

layer.add_variable is deprecated #1702

Open
@ThexXTURBOXx

Description

@ThexXTURBOXx

I am currently trying to implement a Bayesian Neural Network for image classification. However, two warnings are raised:

/usr/local/lib/python3.10/dist-packages/tensorflow_probability/python/layers/util.py:95: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use the `layer.add_weight()` method instead.
  loc = add_variable_fn(
/usr/local/lib/python3.10/dist-packages/tensorflow_probability/python/layers/util.py:105: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use the `layer.add_weight()` method instead.
  untransformed_scale = add_variable_fn(

I am currently using the following code:

    bayesian_model = Sequential([
        tfpl.Convolution2DReparameterization(input_shape=(512, 512, 1), filters=8, kernel_size=16, activation='relu',
                                             kernel_prior_fn=tfpl.default_multivariate_normal_fn,
                                             kernel_posterior_fn=tfpl.default_mean_field_normal_fn(is_singular=False),
                                             kernel_divergence_fn=divergence_fn,
                                             bias_prior_fn=tfpl.default_multivariate_normal_fn,
                                             bias_posterior_fn=tfpl.default_mean_field_normal_fn(is_singular=False),
                                             bias_divergence_fn=divergence_fn),
        Conv2D(kernel_size=(5, 5), filters=8, activation='relu', padding='VALID'),
        MaxPooling2D(pool_size=(6, 6)),
        Flatten(),
        Dropout(0.2),
        tfpl.DenseReparameterization(units=tfpl.OneHotCategorical.params_size(3), activation=None,
                                     kernel_prior_fn=tfpl.default_multivariate_normal_fn,
                                     kernel_posterior_fn=tfpl.default_mean_field_normal_fn(is_singular=False),
                                     kernel_divergence_fn=divergence_fn,
                                     bias_prior_fn=tfpl.default_multivariate_normal_fn,
                                     bias_posterior_fn=tfpl.default_mean_field_normal_fn(is_singular=False),
                                     bias_divergence_fn=divergence_fn
                                     ),
        tfpl.OneHotCategorical(3)
    ])

    bayesian_model.compile(loss=negative_log_likelihood,
                           optimizer=Adam(learning_rate=0.005),
                           metrics=['accuracy'],
                           experimental_run_tf_function=False)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions