@@ -1413,3 +1413,380 @@ impl f128 {
1413
1413
intrinsics:: frem_algebraic ( self , rhs)
1414
1414
}
1415
1415
}
1416
+
1417
+ // Functions in this module fall into `core_float_math`
1418
+ // FIXME(f16_f128): all doctests must be gated to platforms that have `long double` === `_Float128`
1419
+ // due to https://github.com/llvm/llvm-project/issues/44744. aarch64 linux matches this.
1420
+ // #[unstable(feature = "core_float_math", issue = "137578")]
1421
+ #[ cfg( not( test) ) ]
1422
+ impl f128 {
1423
+ /// Returns the largest integer less than or equal to `self`.
1424
+ ///
1425
+ /// This function always returns the precise result.
1426
+ ///
1427
+ /// # Examples
1428
+ ///
1429
+ /// ```
1430
+ /// #![feature(f128)]
1431
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1432
+ ///
1433
+ /// let f = 3.7_f128;
1434
+ /// let g = 3.0_f128;
1435
+ /// let h = -3.7_f128;
1436
+ ///
1437
+ /// assert_eq!(f.floor(), 3.0);
1438
+ /// assert_eq!(g.floor(), 3.0);
1439
+ /// assert_eq!(h.floor(), -4.0);
1440
+ /// # }
1441
+ /// ```
1442
+ #[ inline]
1443
+ #[ rustc_allow_incoherent_impl]
1444
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1445
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1446
+ pub fn floor ( self ) -> f128 {
1447
+ // SAFETY: intrinsic with no preconditions
1448
+ unsafe { intrinsics:: floorf128 ( self ) }
1449
+ }
1450
+
1451
+ /// Returns the smallest integer greater than or equal to `self`.
1452
+ ///
1453
+ /// This function always returns the precise result.
1454
+ ///
1455
+ /// # Examples
1456
+ ///
1457
+ /// ```
1458
+ /// #![feature(f128)]
1459
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1460
+ ///
1461
+ /// let f = 3.01_f128;
1462
+ /// let g = 4.0_f128;
1463
+ ///
1464
+ /// assert_eq!(f.ceil(), 4.0);
1465
+ /// assert_eq!(g.ceil(), 4.0);
1466
+ /// # }
1467
+ /// ```
1468
+ #[ inline]
1469
+ #[ doc( alias = "ceiling" ) ]
1470
+ #[ rustc_allow_incoherent_impl]
1471
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1472
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1473
+ pub fn ceil ( self ) -> f128 {
1474
+ // SAFETY: intrinsic with no preconditions
1475
+ unsafe { intrinsics:: ceilf128 ( self ) }
1476
+ }
1477
+
1478
+ /// Returns the nearest integer to `self`. If a value is half-way between two
1479
+ /// integers, round away from `0.0`.
1480
+ ///
1481
+ /// This function always returns the precise result.
1482
+ ///
1483
+ /// # Examples
1484
+ ///
1485
+ /// ```
1486
+ /// #![feature(f128)]
1487
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1488
+ ///
1489
+ /// let f = 3.3_f128;
1490
+ /// let g = -3.3_f128;
1491
+ /// let h = -3.7_f128;
1492
+ /// let i = 3.5_f128;
1493
+ /// let j = 4.5_f128;
1494
+ ///
1495
+ /// assert_eq!(f.round(), 3.0);
1496
+ /// assert_eq!(g.round(), -3.0);
1497
+ /// assert_eq!(h.round(), -4.0);
1498
+ /// assert_eq!(i.round(), 4.0);
1499
+ /// assert_eq!(j.round(), 5.0);
1500
+ /// # }
1501
+ /// ```
1502
+ #[ inline]
1503
+ #[ rustc_allow_incoherent_impl]
1504
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1505
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1506
+ pub fn round ( self ) -> f128 {
1507
+ // SAFETY: intrinsic with no preconditions
1508
+ unsafe { intrinsics:: roundf128 ( self ) }
1509
+ }
1510
+
1511
+ /// Returns the nearest integer to a number. Rounds half-way cases to the number
1512
+ /// with an even least significant digit.
1513
+ ///
1514
+ /// This function always returns the precise result.
1515
+ ///
1516
+ /// # Examples
1517
+ ///
1518
+ /// ```
1519
+ /// #![feature(f128)]
1520
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1521
+ ///
1522
+ /// let f = 3.3_f128;
1523
+ /// let g = -3.3_f128;
1524
+ /// let h = 3.5_f128;
1525
+ /// let i = 4.5_f128;
1526
+ ///
1527
+ /// assert_eq!(f.round_ties_even(), 3.0);
1528
+ /// assert_eq!(g.round_ties_even(), -3.0);
1529
+ /// assert_eq!(h.round_ties_even(), 4.0);
1530
+ /// assert_eq!(i.round_ties_even(), 4.0);
1531
+ /// # }
1532
+ /// ```
1533
+ #[ inline]
1534
+ #[ rustc_allow_incoherent_impl]
1535
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1536
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1537
+ pub fn round_ties_even ( self ) -> f128 {
1538
+ intrinsics:: round_ties_even_f128 ( self )
1539
+ }
1540
+
1541
+ /// Returns the integer part of `self`.
1542
+ /// This means that non-integer numbers are always truncated towards zero.
1543
+ ///
1544
+ /// This function always returns the precise result.
1545
+ ///
1546
+ /// # Examples
1547
+ ///
1548
+ /// ```
1549
+ /// #![feature(f128)]
1550
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1551
+ ///
1552
+ /// let f = 3.7_f128;
1553
+ /// let g = 3.0_f128;
1554
+ /// let h = -3.7_f128;
1555
+ ///
1556
+ /// assert_eq!(f.trunc(), 3.0);
1557
+ /// assert_eq!(g.trunc(), 3.0);
1558
+ /// assert_eq!(h.trunc(), -3.0);
1559
+ /// # }
1560
+ /// ```
1561
+ #[ inline]
1562
+ #[ doc( alias = "truncate" ) ]
1563
+ #[ rustc_allow_incoherent_impl]
1564
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1565
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1566
+ pub fn trunc ( self ) -> f128 {
1567
+ // SAFETY: intrinsic with no preconditions
1568
+ unsafe { intrinsics:: truncf128 ( self ) }
1569
+ }
1570
+
1571
+ /// Returns the fractional part of `self`.
1572
+ ///
1573
+ /// This function always returns the precise result.
1574
+ ///
1575
+ /// # Examples
1576
+ ///
1577
+ /// ```
1578
+ /// #![feature(f128)]
1579
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1580
+ ///
1581
+ /// let x = 3.6_f128;
1582
+ /// let y = -3.6_f128;
1583
+ /// let abs_difference_x = (x.fract() - 0.6).abs();
1584
+ /// let abs_difference_y = (y.fract() - (-0.6)).abs();
1585
+ ///
1586
+ /// assert!(abs_difference_x <= f128::EPSILON);
1587
+ /// assert!(abs_difference_y <= f128::EPSILON);
1588
+ /// # }
1589
+ /// ```
1590
+ #[ inline]
1591
+ #[ rustc_allow_incoherent_impl]
1592
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1593
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1594
+ pub fn fract ( self ) -> f128 {
1595
+ self - self . trunc ( )
1596
+ }
1597
+
1598
+ /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
1599
+ /// error, yielding a more accurate result than an unfused multiply-add.
1600
+ ///
1601
+ /// Using `mul_add` *may* be more performant than an unfused multiply-add if
1602
+ /// the target architecture has a dedicated `fma` CPU instruction. However,
1603
+ /// this is not always true, and will be heavily dependant on designing
1604
+ /// algorithms with specific target hardware in mind.
1605
+ ///
1606
+ /// # Precision
1607
+ ///
1608
+ /// The result of this operation is guaranteed to be the rounded
1609
+ /// infinite-precision result. It is specified by IEEE 754 as
1610
+ /// `fusedMultiplyAdd` and guaranteed not to change.
1611
+ ///
1612
+ /// # Examples
1613
+ ///
1614
+ /// ```
1615
+ /// #![feature(f128)]
1616
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1617
+ ///
1618
+ /// let m = 10.0_f128;
1619
+ /// let x = 4.0_f128;
1620
+ /// let b = 60.0_f128;
1621
+ ///
1622
+ /// assert_eq!(m.mul_add(x, b), 100.0);
1623
+ /// assert_eq!(m * x + b, 100.0);
1624
+ ///
1625
+ /// let one_plus_eps = 1.0_f128 + f128::EPSILON;
1626
+ /// let one_minus_eps = 1.0_f128 - f128::EPSILON;
1627
+ /// let minus_one = -1.0_f128;
1628
+ ///
1629
+ /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1630
+ /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f128::EPSILON * f128::EPSILON);
1631
+ /// // Different rounding with the non-fused multiply and add.
1632
+ /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1633
+ /// # }
1634
+ /// ```
1635
+ #[ inline]
1636
+ #[ rustc_allow_incoherent_impl]
1637
+ #[ doc( alias = "fmaf128" , alias = "fusedMultiplyAdd" ) ]
1638
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1639
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1640
+ pub fn mul_add ( self , a : f128 , b : f128 ) -> f128 {
1641
+ // SAFETY: intrinsic with no preconditions
1642
+ unsafe { intrinsics:: fmaf128 ( self , a, b) }
1643
+ }
1644
+
1645
+ /// Calculates Euclidean division, the matching method for `rem_euclid`.
1646
+ ///
1647
+ /// This computes the integer `n` such that
1648
+ /// `self = n * rhs + self.rem_euclid(rhs)`.
1649
+ /// In other words, the result is `self / rhs` rounded to the integer `n`
1650
+ /// such that `self >= n * rhs`.
1651
+ ///
1652
+ /// # Precision
1653
+ ///
1654
+ /// The result of this operation is guaranteed to be the rounded
1655
+ /// infinite-precision result.
1656
+ ///
1657
+ /// # Examples
1658
+ ///
1659
+ /// ```
1660
+ /// #![feature(f128)]
1661
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1662
+ ///
1663
+ /// let a: f128 = 7.0;
1664
+ /// let b = 4.0;
1665
+ /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
1666
+ /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
1667
+ /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
1668
+ /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
1669
+ /// # }
1670
+ /// ```
1671
+ #[ inline]
1672
+ #[ rustc_allow_incoherent_impl]
1673
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1674
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1675
+ pub fn div_euclid ( self , rhs : f128 ) -> f128 {
1676
+ let q = ( self / rhs) . trunc ( ) ;
1677
+ if self % rhs < 0.0 {
1678
+ return if rhs > 0.0 { q - 1.0 } else { q + 1.0 } ;
1679
+ }
1680
+ q
1681
+ }
1682
+
1683
+ /// Calculates the least nonnegative remainder of `self (mod rhs)`.
1684
+ ///
1685
+ /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
1686
+ /// most cases. However, due to a floating point round-off error it can
1687
+ /// result in `r == rhs.abs()`, violating the mathematical definition, if
1688
+ /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
1689
+ /// This result is not an element of the function's codomain, but it is the
1690
+ /// closest floating point number in the real numbers and thus fulfills the
1691
+ /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
1692
+ /// approximately.
1693
+ ///
1694
+ /// # Precision
1695
+ ///
1696
+ /// The result of this operation is guaranteed to be the rounded
1697
+ /// infinite-precision result.
1698
+ ///
1699
+ /// # Examples
1700
+ ///
1701
+ /// ```
1702
+ /// #![feature(f128)]
1703
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1704
+ ///
1705
+ /// let a: f128 = 7.0;
1706
+ /// let b = 4.0;
1707
+ /// assert_eq!(a.rem_euclid(b), 3.0);
1708
+ /// assert_eq!((-a).rem_euclid(b), 1.0);
1709
+ /// assert_eq!(a.rem_euclid(-b), 3.0);
1710
+ /// assert_eq!((-a).rem_euclid(-b), 1.0);
1711
+ /// // limitation due to round-off error
1712
+ /// assert!((-f128::EPSILON).rem_euclid(3.0) != 0.0);
1713
+ /// # }
1714
+ /// ```
1715
+ #[ inline]
1716
+ #[ rustc_allow_incoherent_impl]
1717
+ #[ doc( alias = "modulo" , alias = "mod" ) ]
1718
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1719
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1720
+ pub fn rem_euclid ( self , rhs : f128 ) -> f128 {
1721
+ let r = self % rhs;
1722
+ if r < 0.0 { r + rhs. abs ( ) } else { r }
1723
+ }
1724
+
1725
+ /// Raises a number to an integer power.
1726
+ ///
1727
+ /// Using this function is generally faster than using `powf`.
1728
+ /// It might have a different sequence of rounding operations than `powf`,
1729
+ /// so the results are not guaranteed to agree.
1730
+ ///
1731
+ /// # Unspecified precision
1732
+ ///
1733
+ /// The precision of this function is non-deterministic. This means it varies by platform,
1734
+ /// Rust version, and can even differ within the same execution from one invocation to the next.
1735
+ ///
1736
+ /// # Examples
1737
+ ///
1738
+ /// ```
1739
+ /// #![feature(f128)]
1740
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1741
+ ///
1742
+ /// let x = 2.0_f128;
1743
+ /// let abs_difference = (x.powi(2) - (x * x)).abs();
1744
+ /// assert!(abs_difference <= f128::EPSILON);
1745
+ ///
1746
+ /// assert_eq!(f128::powi(f128::NAN, 0), 1.0);
1747
+ /// # }
1748
+ /// ```
1749
+ #[ inline]
1750
+ #[ rustc_allow_incoherent_impl]
1751
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1752
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1753
+ pub fn powi ( self , n : i32 ) -> f128 {
1754
+ // SAFETY: intrinsic with no preconditions
1755
+ unsafe { intrinsics:: powif128 ( self , n) }
1756
+ }
1757
+
1758
+ /// Returns the square root of a number.
1759
+ ///
1760
+ /// Returns NaN if `self` is a negative number other than `-0.0`.
1761
+ ///
1762
+ /// # Precision
1763
+ ///
1764
+ /// The result of this operation is guaranteed to be the rounded
1765
+ /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
1766
+ /// and guaranteed not to change.
1767
+ ///
1768
+ /// # Examples
1769
+ ///
1770
+ /// ```
1771
+ /// #![feature(f128)]
1772
+ /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
1773
+ ///
1774
+ /// let positive = 4.0_f128;
1775
+ /// let negative = -4.0_f128;
1776
+ /// let negative_zero = -0.0_f128;
1777
+ ///
1778
+ /// assert_eq!(positive.sqrt(), 2.0);
1779
+ /// assert!(negative.sqrt().is_nan());
1780
+ /// assert!(negative_zero.sqrt() == negative_zero);
1781
+ /// # }
1782
+ /// ```
1783
+ #[ inline]
1784
+ #[ doc( alias = "squareRoot" ) ]
1785
+ #[ rustc_allow_incoherent_impl]
1786
+ #[ unstable( feature = "f128" , issue = "116909" ) ]
1787
+ #[ must_use = "method returns a new number and does not mutate the original value" ]
1788
+ pub fn sqrt ( self ) -> f128 {
1789
+ // SAFETY: intrinsic with no preconditions
1790
+ unsafe { intrinsics:: sqrtf128 ( self ) }
1791
+ }
1792
+ }
0 commit comments