-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathend_to_end_test.py
646 lines (562 loc) · 26.7 KB
/
end_to_end_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#!/usr/bin/python
import os
import sys
import torch
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
import argparse
import ast
import json
from datetime import datetime
from functools import partial
import numpy as np
from utils import utils
def callback(user_data, start_time, result, error):
user_data._completed_requests.put((result, error))
stop_time = datetime.now()
latency = (stop_time - start_time).total_seconds() * 1000.0
latency = round(latency, 3)
user_data._latencies.append(latency)
def verify_logits(expected_logits, input_logits, rtol=1e-02, atol=1e-02):
torch.cuda.synchronize()
result = np.allclose(expected_logits, input_logits, rtol, atol)
if not result:
ndiff = 0
a = expected_logits.reshape(-1)
b = input_logits.reshape(-1)
assert a.size == b.size
for i in range(a.size):
if a[i] != b[i]:
ndiff += 1
print(f"Expect value: {a[i]}, output value: {b[i]}")
if ndiff > 20:
break
return result
# Helper function to add parameter tensors
def prepare_tensor(name, value, dtype, protocol, batch_size=1):
if value is not None:
shape = np.array([[value]],
dtype=dtype) if batch_size > 1 else np.array(
[value], dtype=dtype)
return utils.prepare_tensor(name, shape, protocol)
return None
def async_stream_infer(client, model_name, inputs, outputs, protocol,
user_data, request_id, use_llmapi):
assert use_llmapi, "Streaming is only supported for LLMAPI model"
assert protocol == "grpc", "Streaming is only supported for gRPC protocol"
client.start_stream(callback=partial(callback, user_data, datetime.now()))
client.async_stream_infer(model_name,
inputs,
outputs=outputs,
request_id=str(request_id))
client.stop_stream()
def test_functionality_llmapi(
client,
model_name,
prompts,
batch_size=1, # TODO: [JIRA-4496] support batching in llmapi backend and add tests here.
streaming=False,
sampling_params=None,
output_config=None):
"""Test basic model functionality with different prompts."""
print(f"[INFO] Start testing on {len(prompts)} prompts.")
results = []
user_data = utils.UserData() if streaming else None
for i, prompt in enumerate(prompts):
inputs = []
# Prepare text_input
input_data = np.array(
[prompt], dtype=object
) ## TODO: [JIRA-4496] support batching in llmapi backend and add tests here.
inputs.append(
utils.prepare_tensor("text_input", input_data, FLAGS.protocol))
if streaming:
inputs.append(
utils.prepare_tensor("streaming", np.array([True], dtype=bool),
FLAGS.protocol))
# Convert sampling_params to tensors
if sampling_params is not None:
for param_name, param_value in sampling_params.items():
inputs.append(
prepare_tensor("sampling_param_" + param_name, param_value,
type(param_value), FLAGS.protocol))
if output_config is not None:
for name, value in output_config.items():
inputs.append(prepare_tensor(name, value, bool,
FLAGS.protocol))
return_finish_reason = output_config[
"return_finish_reason"] if output_config and "return_finish_reason" in output_config else False
return_stop_reason = output_config[
"return_stop_reason"] if output_config and "return_stop_reason" in output_config else False
# Only include needed outputs
outputs = utils.prepare_outputs(
FLAGS.protocol,
return_finish_reason=return_finish_reason,
return_stop_reason=return_stop_reason)
try:
if streaming:
assert user_data is not None
# async_stream_infer(client, model_name, inputs, outputs, protocol, user_data, request_id, use_llmapi)
async_stream_infer(client, model_name, inputs, outputs,
FLAGS.protocol, user_data, i, True)
else:
result = client.infer(model_name, inputs, request_id=str(i))
results.append(result)
except Exception as e:
print(f"[Functionality test] Failed to infer with error: {e}")
exit(1)
if streaming:
results = utils.get_grpc_results(user_data, len(prompts))
for result in results:
text_output = result.as_numpy("text_output")[0].decode("utf-8")
assert text_output, "Text output should not be empty."
if FLAGS.verbose:
print(f"Text output: {text_output}", flush=True)
if return_finish_reason:
finish_reason = result.as_numpy("finish_reason")
assert finish_reason, "Finish reason should not be empty."
if FLAGS.verbose:
print(f"Finish reason: {finish_reason}")
if return_stop_reason:
stop_reason = result.as_numpy("stop_reason")
assert stop_reason, "Stop reason should not be empty."
if FLAGS.verbose:
print(f"Stop reason: {stop_reason}")
print("[INFO] Functionality test succeeded.")
def test_functionality_ifb(client,
prompts,
output_lens,
vocabSizePadded=50257,
return_log_probs=False,
return_context_logits=False,
return_generation_logits=False,
test_bls=False):
print(f"[INFO] Start testing on {len(prompts)} prompts.")
for i, prompt in enumerate(prompts):
# 1. Ensemble models manually: preprocessing -> tensorrt_llm -> postprocessing
model_name = 'preprocessing'
input0 = [[prompt]]
input0_data = np.array(input0).astype(object)
output0_len = np.ones_like(input0).astype(np.int32) * output_lens[i]
bad_words_list = np.array([[""]], dtype=object)
stop_words_list = np.array([[""]], dtype=object)
inputs = [
utils.prepare_tensor("QUERY", input0_data, FLAGS.protocol),
utils.prepare_tensor("BAD_WORDS_DICT", bad_words_list,
FLAGS.protocol),
utils.prepare_tensor("STOP_WORDS_DICT", stop_words_list,
FLAGS.protocol),
utils.prepare_tensor("REQUEST_OUTPUT_LEN", output0_len,
FLAGS.protocol),
]
result = client.infer(model_name, inputs, request_id=str(i))
output0 = result.as_numpy("INPUT_ID")
output1 = result.as_numpy("REQUEST_INPUT_LEN")
output2 = result.as_numpy("REQUEST_OUTPUT_LEN")
decoder_input_id = result.as_numpy("DECODER_INPUT_ID")
output_end_id = result.as_numpy("OUT_END_ID")
output_pad_id = result.as_numpy("OUT_PAD_ID")
inputIds = output0 # Use to check context logits shape
model_name = "tensorrt_llm"
inputs = [
utils.prepare_tensor("input_ids", output0, FLAGS.protocol),
utils.prepare_tensor("decoder_input_ids", decoder_input_id,
FLAGS.protocol),
utils.prepare_tensor("input_lengths", output1, FLAGS.protocol),
utils.prepare_tensor("request_output_len", output2,
FLAGS.protocol),
utils.prepare_tensor("end_id", output_end_id, FLAGS.protocol),
utils.prepare_tensor("pad_id", output_pad_id, FLAGS.protocol),
]
if return_log_probs:
return_log_probs_flag = np.array([[True]], dtype=bool)
inputs += [
utils.prepare_tensor("return_log_probs", return_log_probs_flag,
FLAGS.protocol),
]
if return_context_logits:
return_context_logits_flag = np.array([[True]], dtype=bool)
inputs += [
utils.prepare_tensor("return_context_logits",
return_context_logits_flag,
FLAGS.protocol),
]
if return_generation_logits:
return_generation_logits_flag = np.array([[True]], dtype=bool)
inputs += [
utils.prepare_tensor("return_generation_logits",
return_generation_logits_flag,
FLAGS.protocol),
]
result = client.infer(model_name, inputs, request_id=str(i))
output0 = result.as_numpy("output_ids").astype(np.int32)
seq_lengths = result.as_numpy("sequence_length")
if return_log_probs:
cum_log_probs = result.as_numpy("cum_log_probs").astype(np.float32)
output_log_probs = result.as_numpy("output_log_probs").astype(
np.float32)
if return_context_logits:
context_logits = result.as_numpy("context_logits").astype(
np.float32)
print(f"context_logits.shape: {context_logits.shape}")
if return_generation_logits:
generation_logits = result.as_numpy("generation_logits").astype(
np.float32)
print(f"generation_logits.shape: {generation_logits.shape}")
model_name = "postprocessing"
inputs = [
utils.prepare_tensor("TOKENS_BATCH", output0, FLAGS.protocol),
utils.prepare_tensor("SEQUENCE_LENGTH", seq_lengths,
FLAGS.protocol),
]
inputs[0].set_data_from_numpy(output0)
inputs[1].set_data_from_numpy(seq_lengths)
result = client.infer(model_name, inputs, request_id=str(i))
output0 = result.as_numpy("OUTPUT")
# 2. Use ensemble model
model_name = "ensemble"
input0 = [[prompt]]
input0_data = np.array(input0).astype(object)
output0_len = np.ones_like(input0).astype(np.int32) * output_lens[i]
bad_words_list = np.array([[""]], dtype=object)
stop_words_list = np.array([[""]], dtype=object)
inputs = [
utils.prepare_tensor("text_input", input0_data, FLAGS.protocol),
utils.prepare_tensor("max_tokens", output0_len, FLAGS.protocol),
utils.prepare_tensor("bad_words", bad_words_list, FLAGS.protocol),
utils.prepare_tensor("stop_words", stop_words_list,
FLAGS.protocol),
]
if return_log_probs:
return_log_probs_flag = np.array([[True]], dtype=bool)
inputs += [
utils.prepare_tensor("return_log_probs", return_log_probs_flag,
FLAGS.protocol),
]
if return_context_logits:
return_context_logits_flag = np.array([[True]], dtype=bool)
inputs += [
utils.prepare_tensor("return_context_logits",
return_context_logits_flag,
FLAGS.protocol),
]
if return_generation_logits:
return_generation_logits_flag = np.array([[True]], dtype=bool)
inputs += [
utils.prepare_tensor("return_generation_logits",
return_generation_logits_flag,
FLAGS.protocol),
]
outputs = utils.prepare_outputs(FLAGS.protocol, return_log_probs,
return_context_logits,
return_generation_logits)
print(outputs)
result = client.infer(model_name,
inputs,
outputs=outputs,
request_id=str(i))
# 3. Check the results between manually ensembled models and the ensemble model
ensemble_output = result.as_numpy('text_output')
print(f"ensemble output: {ensemble_output}")
assert output0 == ensemble_output
if return_log_probs:
ensemble_cum_log_probs = result.as_numpy('cum_log_probs')
ensemble_output_log_probs = result.as_numpy('output_log_probs')
assert cum_log_probs == ensemble_cum_log_probs
assert (output_log_probs == ensemble_output_log_probs).all()
if return_context_logits:
ensemble_context_logits = result.as_numpy('context_logits')
assert verify_logits(context_logits, ensemble_context_logits)
ensemble_context_logits_shape = ensemble_context_logits.shape
assert (len(ensemble_context_logits_shape) == 3)
# Expect shape [1, prompt_length, vocabSizePadded]
assert (ensemble_context_logits_shape[0] == 1) # One request
assert (ensemble_context_logits_shape[1] == inputIds.size
) # Prompt length
assert (ensemble_context_logits_shape[2] == vocabSizePadded
) # VocabSizePadded
if return_generation_logits:
ensemble_generation_logits = result.as_numpy('generation_logits')
assert verify_logits(generation_logits, ensemble_generation_logits)
ensemble_generation_logits_shape = ensemble_generation_logits.shape
assert (len(ensemble_generation_logits_shape) == 4)
# Expect shape [1, beam_width, output_length, vocabSizePadded]
assert (ensemble_generation_logits_shape[0] == 1) # One request
assert (ensemble_generation_logits_shape[1] == 1
) # Beam width (default)
assert (ensemble_generation_logits_shape[2] == output_lens[i]
) # Output length
assert (ensemble_generation_logits_shape[3] == vocabSizePadded
) # VocabSizePadded
if test_bls:
# 4. Use bls
model_name = "tensorrt_llm_bls"
input0 = [[prompt]]
input0_data = np.array(input0).astype(object)
output0_len = np.ones_like(input0).astype(
np.int32) * output_lens[i]
bad_words_list = np.array([[""]], dtype=object)
stop_words_list = np.array([[""]], dtype=object)
inputs = [
utils.prepare_tensor("text_input", input0_data,
FLAGS.protocol),
utils.prepare_tensor("max_tokens", output0_len,
FLAGS.protocol),
utils.prepare_tensor("bad_words", bad_words_list,
FLAGS.protocol),
utils.prepare_tensor("stop_words", stop_words_list,
FLAGS.protocol),
]
if return_context_logits:
return_context_logits_flag = np.array([[True]], dtype=bool)
inputs += [
utils.prepare_tensor("return_context_logits",
return_context_logits_flag,
FLAGS.protocol),
]
if return_generation_logits:
return_generation_logits_flag = np.array([[True]], dtype=bool)
inputs += [
utils.prepare_tensor("return_generation_logits",
return_generation_logits_flag,
FLAGS.protocol),
]
result = client.infer(model_name,
inputs,
outputs=outputs,
request_id=str(i))
# 5. Check the results between manually ensembled models and the bls model
bls_output = result.as_numpy('text_output')
assert output0 == bls_output
if return_log_probs:
result.as_numpy('cum_log_probs')
result.as_numpy('output_log_probs')
# Disabled due to flaky results
#assert cum_log_probs == bls_cum_log_probs
#assert (output_log_probs == bls_output_log_probs).all()
if return_context_logits:
bls_context_logits = result.as_numpy('context_logits')
bls_context_logits_shape = bls_context_logits.shape
# Disabled due to flaky results
#assert verify_logits(context_logits, bls_context_logits)
assert (len(bls_context_logits_shape) == 3)
# Expect shape [1, prompt_length, vocabSizePadded]
assert (bls_context_logits_shape[0] == 1) # One request
assert (bls_context_logits_shape[1] == inputIds.size
) # Prompt length
assert (bls_context_logits_shape[2] == vocabSizePadded
) # VocabSizePadded
if return_generation_logits:
bls_generation_logits = result.as_numpy('generation_logits')
# Disabled due to flaky results
#assert verify_logits(generation_logits, bls_generation_logits)
bls_generation_logits_shape = bls_generation_logits.shape
assert (len(bls_generation_logits_shape) == 4)
# Expect shape [1, beam_width, output_length, vocabSizePadded]
assert (bls_generation_logits_shape[0] == 1) # One request
assert (bls_generation_logits_shape[1] == 1
) # Beam width (default)
assert (bls_generation_logits_shape[2] == output_lens[i]
) # Output length
assert (bls_generation_logits_shape[3] == vocabSizePadded
) # VocabSizePadded
if FLAGS.verbose:
print('Response: {}'.format(result.get_response()))
print('Output: {}'.format(ensemble_output))
print(f"[INFO] Functionality test succeed.")
def create_inputs(prompt, output_len, FLAGS, use_llmapi=False):
inputs = []
if not use_llmapi:
input0 = [[prompt]]
input0_data = np.array(input0).astype(object)
output0_len = np.ones_like(input0).astype(np.int32) * output_len
bad_words_list = np.array([[""]], dtype=object)
stop_words_list = np.array([[""]], dtype=object)
inputs = [
utils.prepare_tensor("text_input", input0_data, FLAGS.protocol),
utils.prepare_tensor("max_tokens", output0_len, FLAGS.protocol),
utils.prepare_tensor("bad_words", bad_words_list, FLAGS.protocol),
utils.prepare_tensor("stop_words", stop_words_list,
FLAGS.protocol),
]
else:
input_data = np.array(
[prompt], dtype=object
) ## TODO: [JIRA-4496] support batching in llmapi backend and add tests here.
inputs.append(
utils.prepare_tensor("text_input", input_data, FLAGS.protocol))
inputs.append(
utils.prepare_tensor("sampling_param_max_tokens",
np.array([output_len], dtype=np.int32),
FLAGS.protocol))
return inputs
def test_performance(client, prompts, output_lens, FLAGS, use_llmapi=False):
print(f"[INFO] Warm up for benchmarking.")
if FLAGS.model_name is None:
FLAGS.model_name = "ensemble"
print(f"FLAGS.model_name: {FLAGS.model_name}")
for i in range(min(10, len(prompts))):
inputs = create_inputs(prompts[0], output_lens[0], FLAGS, use_llmapi)
outputs = utils.prepare_outputs(FLAGS.protocol)
warmup_user_data = utils.UserData()
if FLAGS.streaming:
async_stream_infer(client, FLAGS.model_name, inputs, outputs,
FLAGS.protocol, warmup_user_data, i, use_llmapi)
else:
client.infer(FLAGS.model_name,
inputs,
outputs=outputs,
request_id=str(i))
print(f"[INFO] Start benchmarking on {len(prompts)} prompts.")
latency = 0
async_requests = []
start_time = datetime.now()
user_data = utils.UserData()
for i, prompt in enumerate(prompts):
inputs = create_inputs(prompt, output_lens[i], FLAGS, use_llmapi)
outputs = utils.prepare_outputs(FLAGS.protocol)
if FLAGS.streaming:
async_stream_infer(client, FLAGS.model_name, inputs, outputs,
FLAGS.protocol, user_data, i, use_llmapi)
else:
if FLAGS.protocol == "http":
async_requests.append(
client.async_infer(FLAGS.model_name,
inputs,
outputs=outputs,
request_id=str(i)))
elif FLAGS.protocol == "grpc":
async_requests.append(
client.async_infer(FLAGS.model_name,
inputs,
outputs=outputs,
callback=partial(
callback, user_data,
datetime.now()),
request_id=str(i)))
if FLAGS.protocol == "http":
utils.get_http_results(async_requests)
elif FLAGS.protocol == "grpc":
utils.get_grpc_results(user_data, len(prompts))
else:
raise RuntimeError("Invalid protocol")
stop_time = datetime.now()
latency = (stop_time - start_time).total_seconds() * 1000.0
latency = round(latency, 3)
print(f"[INFO] Total Latency: {latency} ms")
if FLAGS.protocol == "grpc":
request_latencies = 0.0
for latency in user_data._latencies:
request_latencies += latency
print(f"[INFO] Total request latencies: {request_latencies} ms")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-v',
'--verbose',
action="store_true",
required=False,
default=False,
help='Enable verbose output')
parser.add_argument('-u',
'--url',
type=str,
required=False,
help='Inference server URL.')
parser.add_argument(
'-i',
'--protocol',
type=str,
required=False,
default='http',
choices=['http', 'grpc'],
help='Protocol ("http"/"grpc") used to ' +
'communicate with inference service. Default is "http".')
parser.add_argument('-c',
'--concurrency',
type=int,
default=128,
required=False,
help='Specify concurrency')
parser.add_argument('--max-input-len',
type=int,
required=False,
help='Specify max input length')
parser.add_argument('--dataset',
type=str,
required=True,
help='Dataset path used for the test.')
parser.add_argument('--return-log-probs',
action="store_true",
default=False,
help='Return log probs.')
parser.add_argument('--return-context-logits',
action="store_true",
default=False,
help='Return context logits.')
parser.add_argument('--return-generation-logits',
action="store_true",
default=False,
help='Return generation logits.')
parser.add_argument('--test-bls',
action="store_true",
default=False,
help="test BLS model")
parser.add_argument('--test-llmapi',
action="store_true",
default=False,
help="test LLMAPI model")
parser.add_argument('--model-name',
type=str,
required=False,
help="model name")
parser.add_argument('--streaming',
action="store_true",
default=False,
help="streaming")
parser.add_argument('--output-config',
type=ast.literal_eval,
help='Output config dictionary')
parser.add_argument('--sampling-params',
type=ast.literal_eval,
help='Sampling parameter dictionary')
FLAGS = parser.parse_args()
if FLAGS.url is None:
FLAGS.url = "localhost:8000" if FLAGS.protocol == "http" else "localhost:8001"
try:
client = utils.create_inference_server_client(
FLAGS.protocol,
FLAGS.url,
concurrency=FLAGS.concurrency,
verbose=FLAGS.verbose)
except Exception as e:
print("Encountered error: " + str(e))
sys.exit(1)
prompts = []
output_lens = []
with open(FLAGS.dataset, 'r') as f:
data_dict = json.load(f)
for req in data_dict:
prompt = req['input'] + ' ' + req['instruction']
output = req['output']
# 1.3 is a magic number that converts number of words to number of tokens
if int(len(prompt.split(' ')) / 1.3) > FLAGS.max_input_len:
continue
prompts.append(prompt)
# 1.3 is a magic number that converts number of words to number of tokens
output_lens.append(int(len(output.split(' ')) * 1.3))
vocabSizePadded = 50257 # gpt
# Parse llmapi specific arguments
if FLAGS.test_llmapi:
assert FLAGS.model_name is not None, "model_name is required for llmapi tests"
test_functionality_llmapi(client,
FLAGS.model_name,
prompts,
streaming=FLAGS.streaming,
sampling_params=FLAGS.sampling_params,
output_config=FLAGS.output_config)
test_performance(client, prompts, output_lens, FLAGS, use_llmapi=True)
else:
test_functionality_ifb(client, prompts, output_lens, vocabSizePadded,
FLAGS.return_log_probs,
FLAGS.return_context_logits,
FLAGS.return_generation_logits, FLAGS.test_bls)
test_performance(client, prompts, output_lens, FLAGS, use_llmapi=False)