Skip to content

implement dpnp.pad #2093

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 17 commits into from
Oct 31, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions .github/workflows/conda-package.yml
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ env:
test_arithmetic.py
test_arraycreation.py
test_arraymanipulation.py
test_arraypad.py
test_bitwise.py
test_copy.py
test_counting.py
Expand Down Expand Up @@ -60,6 +61,7 @@ env:
third_party/cupy/logic_tests
third_party/cupy/manipulation_tests
third_party/cupy/math_tests
third_party/cupy/padding_tests
third_party/cupy/sorting_tests
third_party/cupy/statistics_tests/test_histogram.py
third_party/cupy/statistics_tests/test_meanvar.py
Expand Down
203 changes: 203 additions & 0 deletions dpnp/dpnp_iface_manipulation.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,7 @@
import dpnp

from .dpnp_array import dpnp_array
from .dpnp_utils.dpnp_utils_pad import dpnp_pad

__all__ = [
"append",
Expand Down Expand Up @@ -76,6 +77,7 @@
"matrix_transpose",
"moveaxis",
"ndim",
"pad",
"permute_dims",
"ravel",
"repeat",
Expand Down Expand Up @@ -1894,6 +1896,207 @@ def ndim(a):
return numpy.ndim(a)


def pad(array, pad_width, mode="constant", **kwargs):
"""
Pad an array.

For full documentation refer to :obj:`numpy.pad`.

Parameters
----------
array : {dpnp.ndarray, usm_ndarray}
The array of rank ``N`` to pad.
pad_width : {sequence, array_like, int}
Number of values padded to the edges of each axis.
``((before_1, after_1), ... (before_N, after_N))`` unique pad widths
for each axis.
``(before, after)`` or ``((before, after),)`` yields same before
and after pad for each axis.
``(pad,)`` or ``int`` is a shortcut for ``before = after = pad`` width
for all axes.
mode : {str, function}, optional
One of the following string values or a user supplied function.

"constant"
Pads with a constant value.
"edge"
Pads with the edge values of array.
"linear_ramp"
Pads with the linear ramp between `end_value` and the
array edge value.
"maximum"
Pads with the maximum value of all or part of the
vector along each axis.
"mean"
Pads with the mean value of all or part of the
vector along each axis.
"median"
Pads with the median value of all or part of the
vector along each axis.
"minimum"
Pads with the minimum value of all or part of the
vector along each axis.
"reflect"
Pads with the reflection of the vector mirrored on
the first and last values of the vector along each
axis.
"symmetric"
Pads with the reflection of the vector mirrored
along the edge of the array.
"wrap"
Pads with the wrap of the vector along the axis.
The first values are used to pad the end and the
end values are used to pad the beginning.
"empty"
Pads with undefined values.
<function>
Padding function, see Notes.
Default: ``"constant"``.
stat_length : {None, int, sequence of ints}, optional
Used in ``"maximum"``, ``"mean"``, ``"median"``, and ``"minimum"``.
Number of values at edge of each axis used to calculate the statistic
value. ``((before_1, after_1), ... (before_N, after_N))`` unique
statistic lengths for each axis.
``(before, after)`` or ``((before, after),)`` yields same before
and after statistic lengths for each axis.
``(stat_length,)`` or ``int`` is a shortcut for
``before = after = statistic`` length for all axes.
Default: ``None``, to use the entire axis.
constant_values : {sequence, scalar}, optional
Used in ``"constant"``. The values to set the padded values for each
axis.
``((before_1, after_1), ... (before_N, after_N))`` unique pad constants
for each axis.
``(before, after)`` or ``((before, after),)`` yields same before
and after constants for each axis.
``(constant,)`` or ``constant`` is a shortcut for
``before = after = constant`` for all axes.
Default: ``0``.
end_values : {sequence, scalar}, optional
Used in ``"linear_ramp"``. The values used for the ending value of the
linear_ramp and that will form the edge of the padded array.
``((before_1, after_1), ... (before_N, after_N))`` unique end values
for each axis.
``(before, after)`` or ``((before, after),)`` yields same before
and after end values for each axis.
``(constant,)`` or ``constant`` is a shortcut for
``before = after = constant`` for all axes.
Default: ``0``.
reflect_type : {"even", "odd"}, optional
Used in ``"reflect"``, and ``"symmetric"``. The ``"even"`` style is the
default with an unaltered reflection around the edge value. For
the ``"odd"`` style, the extended part of the array is created by
subtracting the reflected values from two times the edge value.
Default: ``"even"``.

Returns
-------
padded array : dpnp.ndarray
Padded array of rank equal to `array` with shape increased
according to `pad_width`.

Notes
-----
For an array with rank greater than 1, some of the padding of later
axes is calculated from padding of previous axes. This is easiest to
think about with a rank 2 array where the corners of the padded array
are calculated by using padded values from the first axis.

The padding function, if used, should modify a rank 1 array in-place. It
has the following signature::

padding_func(vector, iaxis_pad_width, iaxis, kwargs)

where

vector : dpnp.ndarray
A rank 1 array already padded with zeros. Padded values are
vector[:iaxis_pad_width[0]] and vector[-iaxis_pad_width[1]:].
iaxis_pad_width : tuple
A 2-tuple of ints, iaxis_pad_width[0] represents the number of
values padded at the beginning of vector where
iaxis_pad_width[1] represents the number of values padded at
the end of vector.
iaxis : int
The axis currently being calculated.
kwargs : dict
Any keyword arguments the function requires.

Examples
--------
>>> import dpnp as np
>>> a = np.array([1, 2, 3, 4, 5])
>>> np.pad(a, (2, 3), 'constant', constant_values=(4, 6))
array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6])

>>> np.pad(a, (2, 3), 'edge')
array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5])

>>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4])

>>> np.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5])

>>> np.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> np.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> a = np.array([[1, 2], [3, 4]])
>>> np.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[3, 3, 3, 4, 3, 3, 3],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1]])

>>> a = np.array([1, 2, 3, 4, 5])
>>> np.pad(a, (2, 3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])

>>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])

>>> np.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])

>>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])

>>> np.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])

>>> def pad_width(vector, pad_width, iaxis, kwargs):
... pad_value = kwargs.get('padder', 10)
... vector[:pad_width[0]] = pad_value
... vector[-pad_width[1]:] = pad_value
>>> a = np.arange(6)
>>> a = a.reshape((2, 3))
>>> np.pad(a, 2, pad_width)
array([[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 0, 1, 2, 10, 10],
[10, 10, 3, 4, 5, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10]])
>>> np.pad(a, 2, pad_width, padder=100)
array([[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 0, 1, 2, 100, 100],
[100, 100, 3, 4, 5, 100, 100],
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100]])

"""

dpnp.check_supported_arrays_type(array)
return dpnp_pad(array, pad_width, mode=mode, **kwargs)


def ravel(a, order="C"):
"""
Return a contiguous flattened array.
Expand Down
Loading
Loading