Closed
Description
When (accidentally) calling fft
on an array with one dimension having shape=0, mkl_fft gives a somewhat cryptic error wheras numpy.fft.fft (with no mkl) returns a sensibly shaped array.
with numpy from conda (uses mkl_fft)
import numpy as np
from numpy.fft import fft
fft(np.zeros((10, 0, 5)))
# ValueError: Internal error occurred: b'Intel MKL DFTI ERROR: Inconsistent configuration parameters'
with numpy from pip
import numpy as np
from numpy.fft import fft
fft(np.zeros((10, 0, 5)))
# array([], shape=(10, 0, 5), dtype=complex128)
Conda list
# packages in environment at /home/jesse/anaconda3/envs/fft_test:
#
# Name Version Build Channel
_libgcc_mutex 0.1 main
blas 1.0 mkl
ca-certificates 2019.11.27 0
certifi 2019.11.28 py38_0
intel-openmp 2019.4 243
libedit 3.1.20181209 hc058e9b_0
libffi 3.2.1 hd88cf55_4
libgcc-ng 9.1.0 hdf63c60_0
libgfortran-ng 7.3.0 hdf63c60_0
libstdcxx-ng 9.1.0 hdf63c60_0
mkl 2019.4 243
mkl-service 2.3.0 py38he904b0f_0
mkl_fft 1.0.15 py38ha843d7b_0
mkl_random 1.1.0 py38h962f231_0
ncurses 6.1 he6710b0_1
numpy 1.17.4 py38hc1035e2_0
numpy-base 1.17.4 py38hde5b4d6_0
openssl 1.1.1d h7b6447c_3
pip 19.3.1 py38_0
python 3.8.0 h0371630_2
readline 7.0 h7b6447c_5
setuptools 44.0.0 py38_0
six 1.13.0 py38_0
sqlite 3.30.1 h7b6447c_0
tk 8.6.8 hbc83047_0
wheel 0.33.6 py38_0
xz 5.2.4 h14c3975_4
zlib 1.2.11 h7b6447c_3
Similar things happen for rfft
, fft2
, etc.
Metadata
Metadata
Assignees
Labels
No labels