Skip to content

svm.py fails with IndexError #113

Closed
Closed
@mericas

Description

@mericas

Following instructions in https://medium.com/intel-analytics-software/leverage-intel-optimizations-in-scikit-learn-f562cb9d5544 get errors in all cases. Typical error message is

INFO: python sklearn_bench/svm.py --arch mericas --data-format pandas --data-order F --dtype float64 --max-cache-size 2 --probability -C 1.0 --kernel rbf --device none --file-X-train data/klaverjas_x_train.npy --file-y-train data/klaverjas_y_train.npy --file-X-test data/klaverjas_x_test.npy --file-y-test data/klaverjas_y_test.npy --dataset-name klaverjas

WARNING: Error in benchmark:

Traceback (most recent call last):
File "/home/mericas/scikit-learn_bench-master/sklearn_bench/svm.py", line 107, in
bench.run_with_context(params, main)
File "/home/mericas/scikit-learn_bench-master/bench.py", line 572, in run_with_context
function()
File "/home/mericas/scikit-learn_bench-master/sklearn_bench/svm.py", line 63, in main
train_acc = bench.accuracy_score(y_train, y_pred)
File "/home/mericas/scikit-learn_bench-master/bench.py", line 347, in accuracy_score
return columnwise_score(y_true, y_pred, lambda y1, y2: np.mean(y1 == y2))
File "/home/mericas/scikit-learn_bench-master/bench.py", line 342, in columnwise_score
return [score_func(y[i], yp[i]) for i in range(y.shape[1])]
IndexError: tuple index out of rangeCASE sklearn,svm --data-format pandas --data-order F --dtype float64 --max-cache-size 2 --probability -C 1.0 --kernel rbf --device none JSON DECODING ERROR:
Expecting value: line 1 column 1 (char 0)

Also notice that svm fails using scikit-learn_bench/blob/master/configs/blogs/skl_2021_3.json

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions