Closed
Description
In Python 3.9:
import pandas as pd
import numpy as np
from juliacall import Main as jl
pd_df = pd.DataFrame({'Name': ['Tom', 'nick', 'krish', 'jack'],
'Age': [20, 21, 19, 18]})
jl.seval("using DataFrames")
jl_df = jl.DataFrame(pd_df)
jl_df[1, 2] = -100
pd_df.iloc[0, 1] # still 20
Since PythonCall.PyPandasDataFrame
is compatible with Table.jl and Julia DataFrame's constructor does not copy a table by default, how to explain the above behaviour? Is there any way to avoid data copying?
Metadata
Metadata
Assignees
Labels
No labels