Closed
Description
Name and Version
$ ~/llama.cpp/build/bin/llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA A800-SXM4-80GB MIG 7g.80gb, compute capability 8.0, VMM: yes
version: 5002 (2c3f8b85)
built with x86_64-conda-linux-gnu-cc (conda-forge gcc 11.4.0-13) 11.4.0 for x86_64-conda-linux-gnu
Operating systems
Linux
GGML backends
CUDA
Hardware
AMD EPYC 7742 64-Core Processor + A800-SXM4-80GB
Models
No response
Problem description & steps to reproduce
Compile llama.cpp from source and run it with ~/llama.cpp/build/bin/llama-server -m /models/Llama-3.3-70B-Instruct-Q8_0.gguf --port 8000 -t 8 -ngl 81 -c 15360 --jinja
First Bad Commit
No response
Relevant log output
$ ~/llama.cpp/build/bin/llama-server -m /models/Llama-3.3-70B-Instruct-Q8_0.gguf --port 8000 -t 8 -ngl 81 -c 15360 --jinja
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA A800-SXM4-80GB MIG 7g.80gb, compute capability 8.0, VMM: yes
build: 5002 (2c3f8b85) with x86_64-conda-linux-gnu-cc (conda-forge gcc 11.4.0-13) 11.4.0 for x86_64-conda-linux-gnu
system info: n_threads = 8, n_threads_batch = 8, total_threads = 256
system_info: n_threads = 8 (n_threads_batch = 8) / 256 | CUDA : ARCHS = 500,610,700,750,800 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 8000, http threads: 255
main: loading model
srv load_model: loading model '/models/Llama-3.3-70B-Instruct-Q8_0.gguf'
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA A800-SXM4-80GB MIG 7g.80gb) - 80839 MiB free
llama_model_loader: loaded meta data with 33 key-value pairs and 724 tensors from /models/Llama-3.3-70B-Instruct-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.size_label str = 71B
llama_model_loader: - kv 3: general.license str = llama3.3
llama_model_loader: - kv 4: general.base_model.count u32 = 1
llama_model_loader: - kv 5: general.base_model.0.name str = Llama 3.1 70B
llama_model_loader: - kv 6: general.base_model.0.organization str = Meta Llama
llama_model_loader: - kv 7: general.base_model.0.repo_url str = https://huggingface.co/meta-llama/Lla...
llama_model_loader: - kv 8: general.tags arr[str,5] = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv 9: general.languages arr[str,8] = ["en", "fr", "it", "pt", "hi", "es", ...
llama_model_loader: - kv 10: llama.block_count u32 = 80
llama_model_loader: - kv 11: llama.context_length u32 = 131072
llama_model_loader: - kv 12: llama.embedding_length u32 = 8192
llama_model_loader: - kv 13: llama.feed_forward_length u32 = 28672
llama_model_loader: - kv 14: llama.attention.head_count u32 = 64
llama_model_loader: - kv 15: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 16: llama.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 17: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 18: llama.attention.key_length u32 = 128
llama_model_loader: - kv 19: llama.attention.value_length u32 = 128
llama_model_loader: - kv 20: general.file_type u32 = 7
llama_model_loader: - kv 21: llama.vocab_size u32 = 128256
llama_model_loader: - kv 22: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 23: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 24: tokenizer.ggml.pre str = llama-bpe
llama_model_loader: - kv 25: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 26: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 27: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv 28: tokenizer.ggml.bos_token_id u32 = 128000
llama_model_loader: - kv 29: tokenizer.ggml.eos_token_id u32 = 128009
llama_model_loader: - kv 30: tokenizer.ggml.padding_token_id u32 = 128004
llama_model_loader: - kv 31: tokenizer.chat_template str = {{- bos_token }}\n{%- if custom_tools ...
llama_model_loader: - kv 32: general.quantization_version u32 = 2
llama_model_loader: - type f32: 162 tensors
llama_model_loader: - type q8_0: 562 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q8_0
print_info: file size = 69.82 GiB (8.50 BPW)
load: special tokens cache size = 256
load: token to piece cache size = 0.7999 MB
print_info: arch = llama
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 8192
print_info: n_layer = 80
print_info: n_head = 64
print_info: n_head_kv = 8
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_swa_pattern = 1
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 8
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 28672
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 0
print_info: rope scaling = linear
print_info: freq_base_train = 500000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 131072
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 70B
print_info: model params = 70.55 B
print_info: general.name = n/a
print_info: vocab type = BPE
print_info: n_vocab = 128256
print_info: n_merges = 280147
print_info: BOS token = 128000 '<|begin_of_text|>'
print_info: EOS token = 128009 '<|eot_id|>'
print_info: EOT token = 128009 '<|eot_id|>'
print_info: EOM token = 128008 '<|eom_id|>'
print_info: PAD token = 128004 '<|finetune_right_pad_id|>'
print_info: LF token = 198 'Ċ'
print_info: EOG token = 128008 '<|eom_id|>'
print_info: EOG token = 128009 '<|eot_id|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 80 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 81/81 layers to GPU
load_tensors: CUDA0 model buffer size = 70429.66 MiB
load_tensors: CPU_Mapped model buffer size = 1064.62 MiB
...................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 15360
llama_context: n_ctx_per_seq = 15360
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: freq_base = 500000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (15360) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context: CUDA_Host output buffer size = 0.49 MiB
init: kv_size = 15360, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 80, can_shift = 1
init: CUDA0 KV buffer size = 4800.00 MiB
llama_context: KV self size = 4800.00 MiB, K (f16): 2400.00 MiB, V (f16): 2400.00 MiB
llama_context: CUDA0 compute buffer size = 2014.00 MiB
llama_context: CUDA_Host compute buffer size = 46.01 MiB
llama_context: graph nodes = 2726
llama_context: graph splits = 2
common_init_from_params: setting dry_penalty_last_n to ctx_size = 15360
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv init: initializing slots, n_slots = 1
slot init: id 0 | task -1 | new slot n_ctx_slot = 15360
main: model loaded
main: chat template, chat_template: {{- bos_token }}
{%- if custom_tools is defined %}
{%- set tools = custom_tools %}
{%- endif %}
{%- if not tools_in_user_message is defined %}
{%- set tools_in_user_message = true %}
{%- endif %}
{%- if not date_string is defined %}
{%- set date_string = "26 Jul 2024" %}
{%- endif %}
{%- if not tools is defined %}
{%- set tools = none %}
{%- endif %}
{#- This block extracts the system message, so we can slot it into the right place. #}
{%- if messages[0]['role'] == 'system' %}
{%- set system_message = messages[0]['content']|trim %}
{%- set messages = messages[1:] %}
{%- else %}
{%- set system_message = "" %}
{%- endif %}
{#- System message + builtin tools #}
{{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
{%- if builtin_tools is defined or tools is not none %}
{{- "Environment: ipython\n" }}
{%- endif %}
{%- if builtin_tools is defined %}
{{- "Tools: " + builtin_tools | reject('equalto', 'code_interpreter') | join(", ") + "\n\n"}}
{%- endif %}
{{- "Cutting Knowledge Date: December 2023\n" }}
{{- "Today Date: " + date_string + "\n\n" }}
{%- if tools is not none and not tools_in_user_message %}
{{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
{{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
{{- "Do not use variables.\n\n" }}
{%- for t in tools %}
{{- t | tojson(indent=4) }}
{{- "\n\n" }}
{%- endfor %}
{%- endif %}
{{- system_message }}
{{- "<|eot_id|>" }}
{#- Custom tools are passed in a user message with some extra guidance #}
{%- if tools_in_user_message and not tools is none %}
{#- Extract the first user message so we can plug it in here #}
{%- if messages | length != 0 %}
{%- set first_user_message = messages[0]['content']|trim %}
{%- set messages = messages[1:] %}
{%- else %}
{{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
{%- endif %}
{{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
{{- "Given the following functions, please respond with a JSON for a function call " }}
{{- "with its proper arguments that best answers the given prompt.\n\n" }}
{{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
{{- "Do not use variables.\n\n" }}
{%- for t in tools %}
{{- t | tojson(indent=4) }}
{{- "\n\n" }}
{%- endfor %}
{{- first_user_message + "<|eot_id|>"}}
{%- endif %}
{%- for message in messages %}
{%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
{{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
{%- elif 'tool_calls' in message %}
{%- if not message.tool_calls|length == 1 %}
{{- raise_exception("This model only supports single tool-calls at once!") }}
{%- endif %}
{%- set tool_call = message.tool_calls[0].function %}
{%- if builtin_tools is defined and tool_call.name in builtin_tools %}
{{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
{{- "<|python_tag|>" + tool_call.name + ".call(" }}
{%- for arg_name, arg_val in tool_call.arguments | items %}
{{- arg_name + '="' + arg_val + '"' }}
{%- if not loop.last %}
{{- ", " }}
{%- endif %}
{%- endfor %}
{{- ")" }}
{%- else %}
{{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
{{- '{"name": "' + tool_call.name + '", ' }}
{{- '"parameters": ' }}
{{- tool_call.arguments | tojson }}
{{- "}" }}
{%- endif %}
{%- if builtin_tools is defined %}
{#- This means we're in ipython mode #}
{{- "<|eom_id|>" }}
{%- else %}
{{- "<|eot_id|>" }}
{%- endif %}
{%- elif message.role == "tool" or message.role == "ipython" %}
{{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
{%- if message.content is mapping or message.content is iterable %}
{{- message.content | tojson }}
{%- else %}
{{- message.content }}
{%- endif %}
{{- "<|eot_id|>" }}
{%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
{{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
{%- endif %}
, example_format: '<|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 26 Jul 2024
You are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>
Hello<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Hi there<|eot_id|><|start_header_id|>user<|end_header_id|>
How are you?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
'
main: server is listening on http://127.0.0.1:8000 - starting the main loop
srv update_slots: all slots are idle