Description
Prerequisites
Please answer the following questions for yourself before submitting an issue.
- I am running the latest code. Development is very rapid so there are no tagged versions as of now.
- I carefully followed the README.md.
- I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
- I reviewed the Discussions, and have a new bug or useful enhancement to share.
Expected Behavior
I am trying to use the WizardCoder Python 34B model with llama.cpp, using the opencl drivers. I am using a radeon 7900 XT.
Current Behavior
Llama.cpp crashes with the following output:
GGML_ASSERT: /build/rn9i4s34d56xdfq7njrkj416w9g08hh8-source/ggml.c:11236: ne02 == ne12
[alissa:29711] *** Process received signal ***
[alissa:29711] Signal: Aborted (6)
[alissa:29711] Signal code: (-6)
[alissa:29711] [ 0] /nix/store/vq3sdi8l15rzfl5zvmwpafrzis4sm6xf-glibc-2.37-8/lib/libc.so.6(+0x38d30)[0x7f7821372d30]
[alissa:29711] [ 1] /nix/store/vq3sdi8l15rzfl5zvmwpafrzis4sm6xf-glibc-2.37-8/lib/libc.so.6(+0x87a8c)[0x7f78213c1a8c]
[alissa:29711] [ 2] /nix/store/vq3sdi8l15rzfl5zvmwpafrzis4sm6xf-glibc-2.37-8/lib/libc.so.6(gsignal+0x16)[0x7f7821372c86]
[alissa:29711] [ 3] /nix/store/vq3sdi8l15rzfl5zvmwpafrzis4sm6xf-glibc-2.37-8/lib/libc.so.6(abort+0xd7)[0x7f782135c8ba]
[alissa:29711] [ 4] /nix/store/5lcyfbikkjkgigv5kkvq77ssln40s90f-llama.cpp/lib/libllama.so(+0x3ccc7)[0x7f78218eccc7]
[alissa:29711] [ 5] /nix/store/5lcyfbikkjkgigv5kkvq77ssln40s90f-llama.cpp/lib/libllama.so(+0x4fab6)[0x7f78218ffab6]
[alissa:29711] [ 6] /nix/store/vq3sdi8l15rzfl5zvmwpafrzis4sm6xf-glibc-2.37-8/lib/libc.so.6(+0x85dd4)[0x7f78213bfdd4]
[alissa:29711] [ 7] /nix/store/vq3sdi8l15rzfl5zvmwpafrzis4sm6xf-glibc-2.37-8/lib/libc.so.6(+0x1079b0)[0x7f78214419b0]
[alissa:29711] *** End of error message ***
fish: Job 1, 'nix run github:ggerganov/llama.…' terminated by signal (### Instruction:)
fish: Job hello, '' terminated by signal ### Response:' (SIGABRT)
fish: Job Abort, '' terminated by signal ()
Environment and Context
Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions.
- Physical (or virtual) hardware you are using, e.g. for Linux:
$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 24
On-line CPU(s) list: 0-23
Vendor ID: AuthenticAMD
Model name: AMD Ryzen 9 5900X 12-Core Processor
CPU family: 25
Model: 33
Thread(s) per core: 2
Core(s) per socket: 12
Socket(s): 1
Stepping: 2
Frequency boost: disabled
CPU(s) scaling MHz: 71%
CPU max MHz: 4950.1948
CPU min MHz: 2200.0000
BogoMIPS: 7386.25
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse
36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rd
tscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aper
fmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic
movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapi
c cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt
tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_
l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 av
x2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb s
ha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_to
tal cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd arat npt lb
rv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists
pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pk
u ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm
Virtualization features:
Virtualization: AMD-V
Caches (sum of all):
L1d: 384 KiB (12 instances)
L1i: 384 KiB (12 instances)
L2: 6 MiB (12 instances)
L3: 64 MiB (2 instances)
NUMA:
NUMA node(s): 1
NUMA node0 CPU(s): 0-23
Vulnerabilities:
Gather data sampling: Not affected
Itlb multihit: Not affected
L1tf: Not affected
Mds: Not affected
Meltdown: Not affected
Mmio stale data: Not affected
Retbleed: Not affected
Spec rstack overflow: Mitigation; safe RET, no microcode
Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, R
SB filling, PBRSB-eIBRS Not affected
Srbds: Not affected
Tsx async abort: Not affected
- Operating System, e.g. for Linux:
$ uname -a
Linux alissa 6.5.0 #1-NixOS SMP PREEMPT_DYNAMIC Sun Aug 27 21:49:51 UTC 2023 x86_64 GNU/Linux
- SDK version, e.g. for Linux:
I'm building from the latest flake.nix file.
Failure Information (for bugs)
Please help provide information about the failure if this is a bug. If it is not a bug, please remove the rest of this template.
Steps to Reproduce
This failure is reproducible with the WizardCoder Python 34B model, q4_K_M quantization downloaded from here: https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GGUF
I used the following command to build and run:
nix run github:ggerganov/llama.cpp#opencl -- -m models/WizardCoder-Python-34B-V1.0/ggml-model-q4_K.gguf --temp 0 -p 'Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
hello
### Response:'
It should also work to compile normally with openCL support. I can see that the GGML_ASSERT failure is happening inside openCL-specific code, so it's important that this is the openCL version.
Failure Logs
$ nix run github:ggerganov/llama.cpp#opencl -- -m models/WizardCoder-Python-34B-V1.0/ggml-model-q4_K.gguf --temp 0 -p 'Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
hello
### Response:'
Log start
main: build = 0 (unknown)
main: seed = 1693800992
ggml_opencl: selecting platform: 'AMD Accelerated Parallel Processing'
ggml_opencl: selecting device: 'gfx1100'
ggml_opencl: device FP16 support: true
llama_model_loader: loaded meta data with 20 key-value pairs and 435 tensors from /mnt/home/rose/llama.cpp/models/WizardCoder-Python-34B-V1.0/ggml-model-q4_K.gguf (version GGUF V2 (latest))
llama_model_loader: - tensor 0: token_embd.weight q4_K [ 8192, 32001, 1, 1 ]
llama_model_loader: - tensor 1: blk.0.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 2: blk.0.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 3: blk.0.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 4: blk.0.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 5: blk.0.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 6: blk.0.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 7: blk.0.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 8: blk.0.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 9: blk.0.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 10: blk.1.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 11: blk.1.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 12: blk.1.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 13: blk.1.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 14: blk.1.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 15: blk.1.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 16: blk.1.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 17: blk.1.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 18: blk.1.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 19: blk.2.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 20: blk.2.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 21: blk.2.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 22: blk.2.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 23: blk.2.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 24: blk.2.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 25: blk.2.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 26: blk.2.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 27: blk.2.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 28: blk.3.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 29: blk.3.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 30: blk.3.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 31: blk.3.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 32: blk.3.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 33: blk.3.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 34: blk.3.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 35: blk.3.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 36: blk.3.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 37: blk.4.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 38: blk.4.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 39: blk.4.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 40: blk.4.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 41: blk.4.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 42: blk.4.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 43: blk.4.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 44: blk.4.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 45: blk.4.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 46: blk.5.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 47: blk.5.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 48: blk.5.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 49: blk.5.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 50: blk.5.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 51: blk.5.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 52: blk.5.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 53: blk.5.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 54: blk.5.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 55: blk.6.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 56: blk.6.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 57: blk.6.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 58: blk.6.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 59: blk.6.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 60: blk.6.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 61: blk.6.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 62: blk.6.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 63: blk.6.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 64: blk.7.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 65: blk.7.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 66: blk.7.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 67: blk.7.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 68: blk.7.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 69: blk.7.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 70: blk.7.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 71: blk.7.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 72: blk.7.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 73: blk.8.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 74: blk.8.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 75: blk.8.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 76: blk.8.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 77: blk.8.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 78: blk.8.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 79: blk.8.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 80: blk.8.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 81: blk.8.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 82: blk.9.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 83: blk.9.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 84: blk.9.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 85: blk.9.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 86: blk.9.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 87: blk.9.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 88: blk.9.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 89: blk.9.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 90: blk.9.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 91: blk.10.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 92: blk.10.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 93: blk.10.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 94: blk.10.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 95: blk.10.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 96: blk.10.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 97: blk.10.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 98: blk.10.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 99: blk.10.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 100: blk.11.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 101: blk.11.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 102: blk.11.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 103: blk.11.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 104: blk.11.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 105: blk.11.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 106: blk.11.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 107: blk.11.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 108: blk.11.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 109: blk.12.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 110: blk.12.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 111: blk.12.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 112: blk.12.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 113: blk.12.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 114: blk.12.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 115: blk.12.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 116: blk.12.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 117: blk.12.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 118: blk.13.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 119: blk.13.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 120: blk.13.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 121: blk.13.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 122: blk.13.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 123: blk.13.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 124: blk.13.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 125: blk.13.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 126: blk.13.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 127: blk.14.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 128: blk.14.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 129: blk.14.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 130: blk.14.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 131: blk.14.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 132: blk.14.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 133: blk.14.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 134: blk.14.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 135: blk.14.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 136: blk.15.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 137: blk.15.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 138: blk.15.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 139: blk.15.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 140: blk.15.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 141: blk.15.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 142: blk.15.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 143: blk.15.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 144: blk.15.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 145: blk.16.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 146: blk.16.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 147: blk.16.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 148: blk.16.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 149: blk.16.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 150: blk.16.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 151: blk.16.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 152: blk.16.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 153: blk.16.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 154: blk.17.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 155: blk.17.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 156: blk.17.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 157: blk.17.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 158: blk.17.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 159: blk.17.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 160: blk.17.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 161: blk.17.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 162: blk.17.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 163: blk.18.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 164: blk.18.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 165: blk.18.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 166: blk.18.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 167: blk.18.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 168: blk.18.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 169: blk.18.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 170: blk.18.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 171: blk.18.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 172: blk.19.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 173: blk.19.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 174: blk.19.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 175: blk.19.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 176: blk.19.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 177: blk.19.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 178: blk.19.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 179: blk.19.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 180: blk.19.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 181: blk.20.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 182: blk.20.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 183: blk.20.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 184: blk.20.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 185: blk.20.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 186: blk.20.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 187: blk.20.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 188: blk.20.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 189: blk.20.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 190: blk.21.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 191: blk.21.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 192: blk.21.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 193: blk.21.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 194: blk.21.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 195: blk.21.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 196: blk.21.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 197: blk.21.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 198: blk.21.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 199: blk.22.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 200: blk.22.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 201: blk.22.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 202: blk.22.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 203: blk.22.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 204: blk.22.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 205: blk.22.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 206: blk.22.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 207: blk.22.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 208: blk.23.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 209: blk.23.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 210: blk.23.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 211: blk.23.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 212: blk.23.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 213: blk.23.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 214: blk.23.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 215: blk.23.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 216: blk.23.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 217: blk.24.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 218: blk.24.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 219: blk.24.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 220: blk.24.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 221: blk.24.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 222: blk.24.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 223: blk.24.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 224: blk.24.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 225: blk.24.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 226: blk.25.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 227: blk.25.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 228: blk.25.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 229: blk.25.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 230: blk.25.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 231: blk.25.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 232: blk.25.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 233: blk.25.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 234: blk.25.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 235: blk.26.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 236: blk.26.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 237: blk.26.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 238: blk.26.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 239: blk.26.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 240: blk.26.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 241: blk.26.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 242: blk.26.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 243: blk.26.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 244: blk.27.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 245: blk.27.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 246: blk.27.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 247: blk.27.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 248: blk.27.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 249: blk.27.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 250: blk.27.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 251: blk.27.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 252: blk.27.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 253: blk.28.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 254: blk.28.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 255: blk.28.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 256: blk.28.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 257: blk.28.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 258: blk.28.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 259: blk.28.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 260: blk.28.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 261: blk.28.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 262: blk.29.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 263: blk.29.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 264: blk.29.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 265: blk.29.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 266: blk.29.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 267: blk.29.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 268: blk.29.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 269: blk.29.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 270: blk.29.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 271: blk.30.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 272: blk.30.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 273: blk.30.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 274: blk.30.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 275: blk.30.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 276: blk.30.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 277: blk.30.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 278: blk.30.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 279: blk.30.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 280: blk.31.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 281: blk.31.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 282: blk.31.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 283: blk.31.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 284: blk.31.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 285: blk.31.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 286: blk.31.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 287: blk.31.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 288: blk.31.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 289: blk.32.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 290: blk.32.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 291: blk.32.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 292: blk.32.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 293: blk.32.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 294: blk.32.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 295: blk.32.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 296: blk.32.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 297: blk.32.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 298: blk.33.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 299: blk.33.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 300: blk.33.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 301: blk.33.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 302: blk.33.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 303: blk.33.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 304: blk.33.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 305: blk.33.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 306: blk.33.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 307: blk.34.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 308: blk.34.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 309: blk.34.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 310: blk.34.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 311: blk.34.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 312: blk.34.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 313: blk.34.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 314: blk.34.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 315: blk.34.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 316: blk.35.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 317: blk.35.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 318: blk.35.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 319: blk.35.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 320: blk.35.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 321: blk.35.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 322: blk.35.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 323: blk.35.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 324: blk.35.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 325: blk.36.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 326: blk.36.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 327: blk.36.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 328: blk.36.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 329: blk.36.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 330: blk.36.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 331: blk.36.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 332: blk.36.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 333: blk.36.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 334: blk.37.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 335: blk.37.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 336: blk.37.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 337: blk.37.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 338: blk.37.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 339: blk.37.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 340: blk.37.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 341: blk.37.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 342: blk.37.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 343: blk.38.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 344: blk.38.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 345: blk.38.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 346: blk.38.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 347: blk.38.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 348: blk.38.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 349: blk.38.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 350: blk.38.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 351: blk.38.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 352: blk.39.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 353: blk.39.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 354: blk.39.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 355: blk.39.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 356: blk.39.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 357: blk.39.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 358: blk.39.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 359: blk.39.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 360: blk.39.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 361: blk.40.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 362: blk.40.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 363: blk.40.attn_v.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 364: blk.40.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 365: blk.40.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 366: blk.40.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 367: blk.40.ffn_down.weight q4_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 368: blk.40.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 369: blk.40.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 370: blk.41.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 371: blk.41.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 372: blk.41.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 373: blk.41.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 374: blk.41.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 375: blk.41.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 376: blk.41.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 377: blk.41.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 378: blk.41.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 379: blk.42.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 380: blk.42.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 381: blk.42.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 382: blk.42.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 383: blk.42.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 384: blk.42.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 385: blk.42.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 386: blk.42.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 387: blk.42.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 388: blk.43.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 389: blk.43.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 390: blk.43.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 391: blk.43.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 392: blk.43.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 393: blk.43.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 394: blk.43.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 395: blk.43.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 396: blk.43.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 397: blk.44.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 398: blk.44.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 399: blk.44.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 400: blk.44.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 401: blk.44.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 402: blk.44.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 403: blk.44.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 404: blk.44.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 405: blk.44.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 406: blk.45.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 407: blk.45.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 408: blk.45.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 409: blk.45.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 410: blk.45.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 411: blk.45.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 412: blk.45.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 413: blk.45.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 414: blk.45.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 415: blk.46.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 416: blk.46.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 417: blk.46.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 418: blk.46.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 419: blk.46.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 420: blk.46.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 421: blk.46.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 422: blk.46.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 423: blk.46.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 424: blk.47.attn_q.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 425: blk.47.attn_k.weight q4_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 426: blk.47.attn_v.weight q6_K [ 8192, 1024, 1, 1 ]
llama_model_loader: - tensor 427: blk.47.attn_output.weight q4_K [ 8192, 8192, 1, 1 ]
llama_model_loader: - tensor 428: blk.47.ffn_gate.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 429: blk.47.ffn_up.weight q4_K [ 8192, 22016, 1, 1 ]
llama_model_loader: - tensor 430: blk.47.ffn_down.weight q6_K [ 22016, 8192, 1, 1 ]
llama_model_loader: - tensor 431: blk.47.attn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 432: blk.47.ffn_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 433: output_norm.weight f32 [ 8192, 1, 1, 1 ]
llama_model_loader: - tensor 434: output.weight q6_K [ 8192, 32001, 1, 1 ]
llama_model_loader: - kv 0: general.architecture str
llama_model_loader: - kv 1: general.name str
llama_model_loader: - kv 2: llama.context_length u32
llama_model_loader: - kv 3: llama.embedding_length u32
llama_model_loader: - kv 4: llama.block_count u32
llama_model_loader: - kv 5: llama.feed_forward_length u32
llama_model_loader: - kv 6: llama.rope.dimension_count u32
llama_model_loader: - kv 7: llama.attention.head_count u32
llama_model_loader: - kv 8: llama.attention.head_count_kv u32
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32
llama_model_loader: - kv 10: llama.rope.freq_base f32
llama_model_loader: - kv 11: general.file_type u32
llama_model_loader: - kv 12: tokenizer.ggml.model str
llama_model_loader: - kv 13: tokenizer.ggml.tokens arr
llama_model_loader: - kv 14: tokenizer.ggml.scores arr
llama_model_loader: - kv 15: tokenizer.ggml.token_type arr
llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32
llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32
llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32
llama_model_loader: - kv 19: general.quantization_version u32
llama_model_loader: - type f32: 97 tensors
llama_model_loader: - type q4_K: 289 tensors
llama_model_loader: - type q6_K: 49 tensors
llm_load_print_meta: format = GGUF V2 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32001
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 16384
llm_load_print_meta: n_ctx = 512
llm_load_print_meta: n_embd = 8192
llm_load_print_meta: n_head = 64
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_layer = 48
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_gqa = 8
llm_load_print_meta: f_norm_eps = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: n_ff = 22016
llm_load_print_meta: freq_base = 1000000.0
llm_load_print_meta: freq_scale = 1
llm_load_print_meta: model type = 34B
llm_load_print_meta: model ftype = mostly Q4_K - Medium
llm_load_print_meta: model size = 33.74 B
llm_load_print_meta: general.name = models
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.14 MB
llm_load_tensors: using OpenCL for GPU acceleration
llm_load_tensors: mem required = 19282.63 MB (+ 96.00 MB per state)
llm_load_tensors: offloading 0 repeating layers to GPU
llm_load_tensors: offloaded 0/49 layers to GPU
llm_load_tensors: VRAM used: 0 MB
...................................................................................................
llama_new_context_with_model: kv self size = 96.00 MB
llama_new_context_with_model: compute buffer total size = 119.47 MB
system_info: n_threads = 12 / 24 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 |
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.000000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
generate: n_ctx = 512, n_batch = 512, n_predict = -1, n_keep = 0
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
hello
### Response:GGML_ASSERT: /build/rn9i4s34d56xdfq7njrkj416w9g08hh8-source/ggml.c:11236: ne02 == ne12
[alissa:29711] *** Process received signal ***
[alissa:29711] Signal: Aborted (6)
[alissa:29711] Signal code: (-6)
[alissa:29711] [ 0] /nix/store/vq3sdi8l15rzfl5zvmwpafrzis4sm6xf-glibc-2.37-8/lib/libc.so.6(+0x38d30)[0x7f7821372d30]
[alissa:29711] [ 1] /nix/store/vq3sdi8l15rzfl5zvmwpafrzis4sm6xf-glibc-2.37-8/lib/libc.so.6(+0x87a8c)[0x7f78213c1a8c]
[alissa:29711] [ 2] /nix/store/vq3sdi8l15rzfl5zvmwpafrzis4sm6xf-glibc-2.37-8/lib/libc.so.6(gsignal+0x16)[0x7f7821372c86]
[alissa:29711] [ 3] /nix/store/vq3sdi8l15rzfl5zvmwpafrzis4sm6xf-glibc-2.37-8/lib/libc.so.6(abort+0xd7)[0x7f782135c8ba]
[alissa:29711] [ 4] /nix/store/5lcyfbikkjkgigv5kkvq77ssln40s90f-llama.cpp/lib/libllama.so(+0x3ccc7)[0x7f78218eccc7]
[alissa:29711] [ 5] /nix/store/5lcyfbikkjkgigv5kkvq77ssln40s90f-llama.cpp/lib/libllama.so(+0x4fab6)[0x7f78218ffab6]
[alissa:29711] [ 6] /nix/store/vq3sdi8l15rzfl5zvmwpafrzis4sm6xf-glibc-2.37-8/lib/libc.so.6(+0x85dd4)[0x7f78213bfdd4]
[alissa:29711] [ 7] /nix/store/vq3sdi8l15rzfl5zvmwpafrzis4sm6xf-glibc-2.37-8/lib/libc.so.6(+0x1079b0)[0x7f78214419b0]
[alissa:29711] *** End of error message ***
fish: Job 1, 'nix run github:ggerganov/llama.…' terminated by signal (### Instruction:)
fish: Job hello, '' terminated by signal ### Response:' (SIGABRT)
fish: Job Abort, '' terminated by signal ()
Environment info:
$ git log | head -1
commit cf9b08485c4c2d4d945c6e74fe20f273a38b6104
$ lscpu | egrep "AMD|Flags"
Vendor ID: AuthenticAMD
Model name: AMD Ryzen 9 5900X 12-Core Processor
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm
Virtualization: AMD-V
$ python3 --version
Python 3.10.12
$ pip list | egrep "torch|numpy|sentencepiece"
numpy 1.24.0
sentencepiece 0.1.98
[notice] A new release of pip is available: 23.0.1 -> 23.2.1
[notice] To update, run: pip install --upgrade pip
$ make --version | head -1
GNU Make 4.4.1
$ md5sum ./models/WizardCoder-Python-34B-V1.0/ggml-model-q4_K.gguf
509293692a563a4eb6ee96230111e608 ./models/WizardCoder-Python-34B-V1.0/ggml-model-q4_K.gguf