Closed
Description
Prerequisites
Please answer the following questions for yourself before submitting an issue.
- I am running the latest code. Development is very rapid so there are no tagged versions as of now.
- I carefully followed the README.md.
- I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
- I reviewed the Discussions, and have a new bug or useful enhancement to share.
Expected Behavior
Please provide a detailed written description of what you were trying to do, and what you expected llama.cpp
to do.
Current Behavior
Please provide a detailed written description of what llama.cpp
did, instead.
Environment and Context
Running ./server -t 4 -c 4096 -ngl 50 -m /Users/slava/Documents/Development/private/AI/Models/llava1.5/ggml-model-q5_k.gguf --host 0.0.0.0 --port 8007 --mmproj /Users/slava/Documents/Development/private/AI/Models/llava1.5/mmproj-model-f16.gguf
Environment info:
Mac M1 Max 32GB
MacOS 13.6 (22G120)
llama.cpp$ git log | head -1
commit 6961c4bd0b5176e10ab03b35394f1e9eab761792
llama.cpp$ python3 --version
Python 3.11.3
llama.cpp$ make --version | head -1
GNU Make 3.81
$ md5sum ./ggml-model-q5_k.gguf
01878e0b413786b3a2e7845689c999da /Users/slava/Development/private/AI/Models/llava1.5/ggml-model-q5_k.gguf
Failure Information (for bugs)
The inference is stuck, no output.
Steps to Reproduce
rec.mp4
Failure Logs
Run log
{"timestamp":1698333852,"level":"INFO","function":"main","line":2213,"message":"build info","build":1428,"commit":"6961c4b"}
{"timestamp":1698333852,"level":"INFO","function":"main","line":2220,"message":"system info","n_threads":4,"n_threads_batch":-1,"total_threads":10,"system_info":"AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | "}
Multi Modal Mode Enabledclip_model_load: model name: openai/clip-vit-large-patch14-336
clip_model_load: description: image encoder for LLaVA
clip_model_load: GGUF version: 2
clip_model_load: alignment: 32
clip_model_load: n_tensors: 377
clip_model_load: n_kv: 18
clip_model_load: ftype: f16
clip_model_load: text_encoder: 0
clip_model_load: vision_encoder: 1
clip_model_load: llava_projector: 1
clip_model_load: model size: 595.61 MB
clip_model_load: metadata size: 0.13 MB
clip_model_load: total allocated memory: 201.27 MB
llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from /Users/slava/Documents/Development/private/AI/Models/llava1.5/ggml-model-q5_k.gguf (version GGUF V2 (latest))
llama_model_loader: - tensor 0: token_embd.weight q5_K [ 4096, 32000, 1, 1 ]
llama_model_loader: - tensor 1: blk.0.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 2: blk.0.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 3: blk.0.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 4: blk.0.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 5: blk.0.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 6: blk.0.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 7: blk.0.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 8: blk.0.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 9: blk.0.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 10: blk.1.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 11: blk.1.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 12: blk.1.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 13: blk.1.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 14: blk.1.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 15: blk.1.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 16: blk.1.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 17: blk.1.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 18: blk.1.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 19: blk.2.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 20: blk.2.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 21: blk.2.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 22: blk.2.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 23: blk.2.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 24: blk.2.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 25: blk.2.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 26: blk.2.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 27: blk.2.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 28: blk.3.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 29: blk.3.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 30: blk.3.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 31: blk.3.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 32: blk.3.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 33: blk.3.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 34: blk.3.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 35: blk.3.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 36: blk.3.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 37: blk.4.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 38: blk.4.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 39: blk.4.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 40: blk.4.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 41: blk.4.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 42: blk.4.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 43: blk.4.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 44: blk.4.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 45: blk.4.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 46: blk.5.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 47: blk.5.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 48: blk.5.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 49: blk.5.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 50: blk.5.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 51: blk.5.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 52: blk.5.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 53: blk.5.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 54: blk.5.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 55: blk.6.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 56: blk.6.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 57: blk.6.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 58: blk.6.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 59: blk.6.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 60: blk.6.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 61: blk.6.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 62: blk.6.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 63: blk.6.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 64: blk.7.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 65: blk.7.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 66: blk.7.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 67: blk.7.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 68: blk.7.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 69: blk.7.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 70: blk.7.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 71: blk.7.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 72: blk.7.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 73: blk.8.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 74: blk.8.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 75: blk.8.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 76: blk.8.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 77: blk.8.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 78: blk.8.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 79: blk.8.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 80: blk.8.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 81: blk.8.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 82: blk.9.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 83: blk.9.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 84: blk.9.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 85: blk.9.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 86: blk.9.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 87: blk.9.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 88: blk.9.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 89: blk.9.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 90: blk.9.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 91: blk.10.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 92: blk.10.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 93: blk.10.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 94: blk.10.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 95: blk.10.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 96: blk.10.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 97: blk.10.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 98: blk.10.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 99: blk.10.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 100: blk.11.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 101: blk.11.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 102: blk.11.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 103: blk.11.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 104: blk.11.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 105: blk.11.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 106: blk.11.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 107: blk.11.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 108: blk.11.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 109: blk.12.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 110: blk.12.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 111: blk.12.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 112: blk.12.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 113: blk.12.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 114: blk.12.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 115: blk.12.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 116: blk.12.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 117: blk.12.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 118: blk.13.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 119: blk.13.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 120: blk.13.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 121: blk.13.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 122: blk.13.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 123: blk.13.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 124: blk.13.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 125: blk.13.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 126: blk.13.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 127: blk.14.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 128: blk.14.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 129: blk.14.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 130: blk.14.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 131: blk.14.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 132: blk.14.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 133: blk.14.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 134: blk.14.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 135: blk.14.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 136: blk.15.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 137: blk.15.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 138: blk.15.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 139: blk.15.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 140: blk.15.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 141: blk.15.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 142: blk.15.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 143: blk.15.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 144: blk.15.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 145: blk.16.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 146: blk.16.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 147: blk.16.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 148: blk.16.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 149: blk.16.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 150: blk.16.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 151: blk.16.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 152: blk.16.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 153: blk.16.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 154: blk.17.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 155: blk.17.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 156: blk.17.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 157: blk.17.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 158: blk.17.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 159: blk.17.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 160: blk.17.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 161: blk.17.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 162: blk.17.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 163: blk.18.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 164: blk.18.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 165: blk.18.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 166: blk.18.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 167: blk.18.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 168: blk.18.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 169: blk.18.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 170: blk.18.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 171: blk.18.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 172: blk.19.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 173: blk.19.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 174: blk.19.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 175: blk.19.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 176: blk.19.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 177: blk.19.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 178: blk.19.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 179: blk.19.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 180: blk.19.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 181: blk.20.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 182: blk.20.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 183: blk.20.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 184: blk.20.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 185: blk.20.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 186: blk.20.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 187: blk.20.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 188: blk.20.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 189: blk.20.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 190: blk.21.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 191: blk.21.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 192: blk.21.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 193: blk.21.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 194: blk.21.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 195: blk.21.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 196: blk.21.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 197: blk.21.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 198: blk.21.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 199: blk.22.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 200: blk.22.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 201: blk.22.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 202: blk.22.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 203: blk.22.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 204: blk.22.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 205: blk.22.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 206: blk.22.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 207: blk.22.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 208: blk.23.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 209: blk.23.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 210: blk.23.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 211: blk.23.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 212: blk.23.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 213: blk.23.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 214: blk.23.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 215: blk.23.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 216: blk.23.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 217: blk.24.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 218: blk.24.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 219: blk.24.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 220: blk.24.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 221: blk.24.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 222: blk.24.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 223: blk.24.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 224: blk.24.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 225: blk.24.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 226: blk.25.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 227: blk.25.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 228: blk.25.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 229: blk.25.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 230: blk.25.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 231: blk.25.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 232: blk.25.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 233: blk.25.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 234: blk.25.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 235: blk.26.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 236: blk.26.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 237: blk.26.attn_v.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 238: blk.26.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 239: blk.26.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 240: blk.26.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 241: blk.26.ffn_down.weight q5_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 242: blk.26.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 243: blk.26.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 244: blk.27.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 245: blk.27.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 246: blk.27.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 247: blk.27.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 248: blk.27.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 249: blk.27.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 250: blk.27.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 251: blk.27.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 252: blk.27.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 253: blk.28.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 254: blk.28.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 255: blk.28.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 256: blk.28.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 257: blk.28.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 258: blk.28.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 259: blk.28.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 260: blk.28.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 261: blk.28.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 262: blk.29.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 263: blk.29.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 264: blk.29.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 265: blk.29.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 266: blk.29.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 267: blk.29.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 268: blk.29.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 269: blk.29.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 270: blk.29.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 271: blk.30.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 272: blk.30.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 273: blk.30.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 274: blk.30.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 275: blk.30.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 276: blk.30.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 277: blk.30.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 278: blk.30.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 279: blk.30.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 280: blk.31.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 281: blk.31.attn_k.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 282: blk.31.attn_v.weight q6_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 283: blk.31.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 284: blk.31.ffn_gate.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 285: blk.31.ffn_up.weight q5_K [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 286: blk.31.ffn_down.weight q6_K [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 287: blk.31.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 288: blk.31.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 289: output_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 290: output.weight q6_K [ 4096, 32000, 1, 1 ]
llama_model_loader: - kv 0: general.architecture str
llama_model_loader: - kv 1: general.name str
llama_model_loader: - kv 2: llama.context_length u32
llama_model_loader: - kv 3: llama.embedding_length u32
llama_model_loader: - kv 4: llama.block_count u32
llama_model_loader: - kv 5: llama.feed_forward_length u32
llama_model_loader: - kv 6: llama.rope.dimension_count u32
llama_model_loader: - kv 7: llama.attention.head_count u32
llama_model_loader: - kv 8: llama.attention.head_count_kv u32
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32
llama_model_loader: - kv 10: general.file_type u32
llama_model_loader: - kv 11: tokenizer.ggml.model str
llama_model_loader: - kv 12: tokenizer.ggml.tokens arr
llama_model_loader: - kv 13: tokenizer.ggml.scores arr
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr
llama_model_loader: - kv 15: tokenizer.ggml.bos_token_id u32
llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32
llama_model_loader: - kv 17: tokenizer.ggml.padding_token_id u32
llama_model_loader: - kv 18: general.quantization_version u32
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type q5_K: 193 tensors
llama_model_loader: - type q6_K: 33 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format = GGUF V2 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 4096
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff = 11008
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: model type = 7B
llm_load_print_meta: model ftype = mostly Q5_K - Medium
llm_load_print_meta: model params = 6.74 B
llm_load_print_meta: model size = 4.45 GiB (5.68 BPW)
llm_load_print_meta: general.name = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: PAD token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.10 MB
llm_load_tensors: mem required = 4560.96 MB
..................................................................................................
llama_new_context_with_model: n_ctx = 4096
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: kv self size = 2048.00 MB
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M1 Max
ggml_metal_init: picking default device: Apple M1 Max
ggml_metal_init: default.metallib not found, loading from source
ggml_metal_init: loading '/Users/slava/Documents/Development/private/AI/llama.cpp/ggml-metal.metal'
ggml_metal_init: loaded kernel_add 0x104204b40 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_add_row 0x12a706f50 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_mul 0x12b105c30 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_mul_row 0x12b106330 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_scale 0x12b106870 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_scale_4 0x104205280 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_silu 0x1042058e0 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_relu 0x12a604e40 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_gelu 0x12a707490 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_soft_max 0x12a707c50 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_soft_max_4 0x104205d00 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_diag_mask_inf 0x1042064f0 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_diag_mask_inf_8 0x104206b70 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_get_rows_f32 0x104207240 | th_max = 896 | th_width = 32
ggml_metal_init: loaded kernel_get_rows_f16 0x104207910 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_get_rows_q4_0 0x104207fe0 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_get_rows_q4_1 0x1042086b0 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_get_rows_q5_0 0x12b106e20 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_get_rows_q5_1 0x12b107610 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_get_rows_q8_0 0x12b107f70 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_get_rows_q2_K 0x12b108640 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_get_rows_q3_K 0x12b108d10 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_get_rows_q4_K 0x12b1093e0 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_get_rows_q5_K 0x104208de0 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_get_rows_q6_K 0x1042094b0 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_rms_norm 0x104209b90 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_norm 0x10420a260 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_mul_mv_f32_f32 0x10420a9a0 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_mul_mv_f16_f32 0x10420b220 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_mul_mv_f16_f32_1row 0x10420baa0 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_mul_mv_f16_f32_l4 0x12b109da0 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_mul_mv_q4_0_f32 0x12b10a640 | th_max = 896 | th_width = 32
ggml_metal_init: loaded kernel_mul_mv_q4_1_f32 0x12b10ab80 | th_max = 896 | th_width = 32
ggml_metal_init: loaded kernel_mul_mv_q5_0_f32 0x10420c100 | th_max = 576 | th_width = 32
ggml_metal_init: loaded kernel_mul_mv_q5_1_f32 0x10420c9a0 | th_max = 576 | th_width = 32
ggml_metal_init: loaded kernel_mul_mv_q8_0_f32 0x12a708870 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_mul_mv_q2_K_f32 0x12b004bc0 | th_max = 640 | th_width = 32
ggml_metal_init: loaded kernel_mul_mv_q3_K_f32 0x12b006370 | th_max = 576 | th_width = 32
ggml_metal_init: loaded kernel_mul_mv_q4_K_f32 0x12b006a50 | th_max = 576 | th_width = 32
ggml_metal_init: loaded kernel_mul_mv_q5_K_f32 0x12b0071d0 | th_max = 640 | th_width = 32
ggml_metal_init: loaded kernel_mul_mv_q6_K_f32 0x10420d000 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_mul_mm_f32_f32 0x12a605950 | th_max = 768 | th_width = 32
ggml_metal_init: loaded kernel_mul_mm_f16_f32 0x10420d670 | th_max = 768 | th_width = 32
ggml_metal_init: loaded kernel_mul_mm_q4_0_f32 0x12a708ff0 | th_max = 768 | th_width = 32
ggml_metal_init: loaded kernel_mul_mm_q4_1_f32 0x10420e190 | th_max = 768 | th_width = 32
ggml_metal_init: loaded kernel_mul_mm_q5_0_f32 0x12b10afa0 | th_max = 704 | th_width = 32
ggml_metal_init: loaded kernel_mul_mm_q5_1_f32 0x12b10bb50 | th_max = 704 | th_width = 32
ggml_metal_init: loaded kernel_mul_mm_q8_0_f32 0x12b10c690 | th_max = 768 | th_width = 32
ggml_metal_init: loaded kernel_mul_mm_q2_K_f32 0x12b10cec0 | th_max = 768 | th_width = 32
ggml_metal_init: loaded kernel_mul_mm_q3_K_f32 0x12b10d6f0 | th_max = 768 | th_width = 32
ggml_metal_init: loaded kernel_mul_mm_q4_K_f32 0x12b10df20 | th_max = 768 | th_width = 32
ggml_metal_init: loaded kernel_mul_mm_q5_K_f32 0x12b10e750 | th_max = 768 | th_width = 32
ggml_metal_init: loaded kernel_mul_mm_q6_K_f32 0x10420ecb0 | th_max = 768 | th_width = 32
ggml_metal_init: loaded kernel_rope_f32 0x10420f1f0 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_rope_f16 0x10420f730 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_alibi_f32 0x10420fc70 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_cpy_f32_f16 0x12a6060e0 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_cpy_f32_f32 0x12a606ab0 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_cpy_f16_f16 0x1041054b0 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_concat 0x104105950 | th_max = 1024 | th_width = 32
ggml_metal_init: loaded kernel_sqr 0x104105e90 | th_max = 1024 | th_width = 32
ggml_metal_init: GPU name: Apple M1 Max
ggml_metal_init: GPU family: MTLGPUFamilyApple7 (1007)
ggml_metal_init: hasUnifiedMemory = true
ggml_metal_init: recommendedMaxWorkingSetSize = 21845.34 MB
ggml_metal_init: maxTransferRate = built-in GPU
llama_new_context_with_model: compute buffer total size = 294.13 MB
llama_new_context_with_model: max tensor size = 102.54 MB
ggml_metal_add_buffer: allocated 'data ' buffer, size = 4561.58 MB, ( 4562.08 / 21845.34)
ggml_metal_add_buffer: allocated 'kv ' buffer, size = 2048.02 MB, ( 6610.09 / 21845.34)
ggml_metal_add_buffer: allocated 'alloc ' buffer, size = 288.02 MB, ( 6898.11 / 21845.34)
Available slots:
-> Slot 0 - max context: 4096
llama server listening at http://0.0.0.0:8007
{"timestamp":1698333859,"level":"INFO","function":"main","line":2495,"message":"HTTP server listening","hostname":"0.0.0.0","port":8007}
all slots are idle and system prompt is empty, clear the KV cache
{"timestamp":1698333903,"level":"INFO","function":"log_server_request","line":2163,"message":"request","remote_addr":"127.0.0.1","remote_port":61738,"status":200,"method":"GET","path":"/","params":{}}
{"timestamp":1698333903,"level":"INFO","function":"log_server_request","line":2163,"message":"request","remote_addr":"127.0.0.1","remote_port":61740,"status":200,"method":"GET","path":"/completion.js","params":{}}
{"timestamp":1698333903,"level":"INFO","function":"log_server_request","line":2163,"message":"request","remote_addr":"127.0.0.1","remote_port":61742,"status":200,"method":"GET","path":"/json-schema-to-grammar.mjs","params":{}}
{"timestamp":1698333903,"level":"INFO","function":"log_server_request","line":2163,"message":"request","remote_addr":"127.0.0.1","remote_port":61738,"status":200,"method":"GET","path":"/index.js","params":{}}
{"timestamp":1698333903,"level":"INFO","function":"log_server_request","line":2163,"message":"request","remote_addr":"127.0.0.1","remote_port":61740,"status":404,"method":"GET","path":"/favicon.ico","params":{}}
slot 0 - image loaded [id: 10] resolution (1200 x 1800)
slot 0 is processing [task id: 0]
print_timings: prompt eval time = 0.00 ms / 0 tokens ( nan ms per token, nan tokens per second)
print_timings: eval time = 2427173839.78 ms / 0 runs ( inf ms per token, 0.00 tokens per second)
print_timings: total time = 2427173839.78 ms
{"timestamp":1698334323,"level":"INFO","function":"log_server_request","line":2163,"message":"request","remote_addr":"127.0.0.1","remote_port":61831,"status":200,"method":"POST","path":"/completion","params":{}}
slot 0 released (0 tokens in cache)
slot 0 released (0 tokens in cache)