Skip to content

Segmentation fault after model load on ROCm multi-gpu, multi-gfx #4030

Closed
@xangelix

Description

@xangelix

Prerequisites

Please answer the following questions for yourself before submitting an issue.

  • I am running the latest code. Development is very rapid so there are no tagged versions as of now.
  • I carefully followed the README.md.
  • I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
  • I reviewed the Discussions, and have a new bug or useful enhancement to share.

Expected Behavior

NA

Current Behavior

Segmentation fault after model load for ROCm multi-gpu, multi-gfx. Best I can remember it worked a couple months ago, but has now been broken at least 2 weeks.

Environment and Context

  • Physical (or virtual) hardware you are using, e.g. for Linux:
rocminfo
ROCk module is loaded
=====================    
HSA System Attributes    
=====================    
Runtime Version:         1.1
System Timestamp Freq.:  1000.000000MHz
Sig. Max Wait Duration:  18446744073709551615 (0xFFFFFFFFFFFFFFFF) (timestamp count)
Machine Model:           LARGE                              
System Endianness:       LITTLE                             
Mwaitx:                  DISABLED
DMAbuf Support:          YES

==========               
HSA Agents               
==========               
*******                  
Agent 1                  
*******                  
  Name:                    AMD Ryzen 9 7950X 16-Core Processor
  Uuid:                    CPU-XX                             
  Marketing Name:          AMD Ryzen 9 7950X 16-Core Processor
  Vendor Name:             CPU                                
  Feature:                 None specified                     
  Profile:                 FULL_PROFILE                       
  Float Round Mode:        NEAR                               
  Max Queue Number:        0(0x0)                             
  Queue Min Size:          0(0x0)                             
  Queue Max Size:          0(0x0)                             
  Queue Type:              MULTI                              
  Node:                    0                                  
  Device Type:             CPU                                
  Cache Info:              
    L1:                      32768(0x8000) KB                   
  Chip ID:                 0(0x0)                             
  ASIC Revision:           0(0x0)                             
  Cacheline Size:          64(0x40)                           
  Max Clock Freq. (MHz):   6021                               
  BDFID:                   0                                  
  Internal Node ID:        0                                  
  Compute Unit:            32                                 
  SIMDs per CU:            0                                  
  Shader Engines:          0                                  
  Shader Arrs. per Eng.:   0                                  
  WatchPts on Addr. Ranges:1                                  
  Features:                None
  Pool Info:               
    Pool 1                   
      Segment:                 GLOBAL; FLAGS: FINE GRAINED        
      Size:                    65539100(0x3e80c1c) KB             
      Allocatable:             TRUE                               
      Alloc Granule:           4KB                                
      Alloc Alignment:         4KB                                
      Accessible by all:       TRUE                               
    Pool 2                   
      Segment:                 GLOBAL; FLAGS: KERNARG, FINE GRAINED
      Size:                    65539100(0x3e80c1c) KB             
      Allocatable:             TRUE                               
      Alloc Granule:           4KB                                
      Alloc Alignment:         4KB                                
      Accessible by all:       TRUE                               
    Pool 3                   
      Segment:                 GLOBAL; FLAGS: COARSE GRAINED      
      Size:                    65539100(0x3e80c1c) KB             
      Allocatable:             TRUE                               
      Alloc Granule:           4KB                                
      Alloc Alignment:         4KB                                
      Accessible by all:       TRUE                               
  ISA Info:                
*******                  
Agent 2                  
*******                  
  Name:                    gfx1100                            
  Uuid:                    GPU-28b5961221d81024               
  Marketing Name:          AMD Radeon RX 7900 XTX             
  Vendor Name:             AMD                                
  Feature:                 KERNEL_DISPATCH                    
  Profile:                 BASE_PROFILE                       
  Float Round Mode:        NEAR                               
  Max Queue Number:        128(0x80)                          
  Queue Min Size:          64(0x40)                           
  Queue Max Size:          131072(0x20000)                    
  Queue Type:              MULTI                              
  Node:                    1                                  
  Device Type:             GPU                                
  Cache Info:              
    L1:                      32(0x20) KB                        
    L2:                      6144(0x1800) KB                    
    L3:                      98304(0x18000) KB                  
  Chip ID:                 29772(0x744c)                      
  ASIC Revision:           0(0x0)                             
  Cacheline Size:          64(0x40)                           
  Max Clock Freq. (MHz):   2526                               
  BDFID:                   768                                
  Internal Node ID:        1                                  
  Compute Unit:            96                                 
  SIMDs per CU:            2                                  
  Shader Engines:          6                                  
  Shader Arrs. per Eng.:   2                                  
  WatchPts on Addr. Ranges:4                                  
  Features:                KERNEL_DISPATCH 
  Fast F16 Operation:      TRUE                               
  Wavefront Size:          32(0x20)                           
  Workgroup Max Size:      1024(0x400)                        
  Workgroup Max Size per Dimension:
    x                        1024(0x400)                        
    y                        1024(0x400)                        
    z                        1024(0x400)                        
  Max Waves Per CU:        32(0x20)                           
  Max Work-item Per CU:    1024(0x400)                        
  Grid Max Size:           4294967295(0xffffffff)             
  Grid Max Size per Dimension:
    x                        4294967295(0xffffffff)             
    y                        4294967295(0xffffffff)             
    z                        4294967295(0xffffffff)             
  Max fbarriers/Workgrp:   32                                 
  Packet Processor uCode:: 528                                
  SDMA engine uCode::      19                                 
  IOMMU Support::          None                               
  Pool Info:               
    Pool 1                   
      Segment:                 GLOBAL; FLAGS: COARSE GRAINED      
      Size:                    25149440(0x17fc000) KB             
      Allocatable:             TRUE                               
      Alloc Granule:           4KB                                
      Alloc Alignment:         4KB                                
      Accessible by all:       FALSE                              
    Pool 2                   
      Segment:                 GLOBAL; FLAGS:                     
      Size:                    25149440(0x17fc000) KB             
      Allocatable:             TRUE                               
      Alloc Granule:           4KB                                
      Alloc Alignment:         4KB                                
      Accessible by all:       FALSE                              
    Pool 3                   
      Segment:                 GROUP                              
      Size:                    64(0x40) KB                        
      Allocatable:             FALSE                              
      Alloc Granule:           0KB                                
      Alloc Alignment:         0KB                                
      Accessible by all:       FALSE                              
  ISA Info:                
    ISA 1                    
      Name:                    amdgcn-amd-amdhsa--gfx1100         
      Machine Models:          HSA_MACHINE_MODEL_LARGE            
      Profiles:                HSA_PROFILE_BASE                   
      Default Rounding Mode:   NEAR                               
      Default Rounding Mode:   NEAR                               
      Fast f16:                TRUE                               
      Workgroup Max Size:      1024(0x400)                        
      Workgroup Max Size per Dimension:
        x                        1024(0x400)                        
        y                        1024(0x400)                        
        z                        1024(0x400)                        
      Grid Max Size:           4294967295(0xffffffff)             
      Grid Max Size per Dimension:
        x                        4294967295(0xffffffff)             
        y                        4294967295(0xffffffff)             
        z                        4294967295(0xffffffff)             
      FBarrier Max Size:       32                                 
*******                  
Agent 3                  
*******                  
  Name:                    gfx1030                            
  Uuid:                    GPU-8de346d621abe448               
  Marketing Name:          AMD Radeon RX 6900 XT              
  Vendor Name:             AMD                                
  Feature:                 KERNEL_DISPATCH                    
  Profile:                 BASE_PROFILE                       
  Float Round Mode:        NEAR                               
  Max Queue Number:        128(0x80)                          
  Queue Min Size:          64(0x40)                           
  Queue Max Size:          131072(0x20000)                    
  Queue Type:              MULTI                              
  Node:                    2                                  
  Device Type:             GPU                                
  Cache Info:              
    L1:                      16(0x10) KB                        
    L2:                      4096(0x1000) KB                    
    L3:                      131072(0x20000) KB                 
  Chip ID:                 29615(0x73af)                      
  ASIC Revision:           1(0x1)                             
  Cacheline Size:          64(0x40)                           
  Max Clock Freq. (MHz):   2720                               
  BDFID:                   1792                               
  Internal Node ID:        2                                  
  Compute Unit:            80                                 
  SIMDs per CU:            2                                  
  Shader Engines:          4                                  
  Shader Arrs. per Eng.:   2                                  
  WatchPts on Addr. Ranges:4                                  
  Features:                KERNEL_DISPATCH 
  Fast F16 Operation:      TRUE                               
  Wavefront Size:          32(0x20)                           
  Workgroup Max Size:      1024(0x400)                        
  Workgroup Max Size per Dimension:
    x                        1024(0x400)                        
    y                        1024(0x400)                        
    z                        1024(0x400)                        
  Max Waves Per CU:        32(0x20)                           
  Max Work-item Per CU:    1024(0x400)                        
  Grid Max Size:           4294967295(0xffffffff)             
  Grid Max Size per Dimension:
    x                        4294967295(0xffffffff)             
    y                        4294967295(0xffffffff)             
    z                        4294967295(0xffffffff)             
  Max fbarriers/Workgrp:   32                                 
  Packet Processor uCode:: 115                                
  SDMA engine uCode::      83                                 
  IOMMU Support::          None                               
  Pool Info:               
    Pool 1                   
      Segment:                 GLOBAL; FLAGS: COARSE GRAINED      
      Size:                    16760832(0xffc000) KB              
      Allocatable:             TRUE                               
      Alloc Granule:           4KB                                
      Alloc Alignment:         4KB                                
      Accessible by all:       FALSE                              
    Pool 2                   
      Segment:                 GLOBAL; FLAGS:                     
      Size:                    16760832(0xffc000) KB              
      Allocatable:             TRUE                               
      Alloc Granule:           4KB                                
      Alloc Alignment:         4KB                                
      Accessible by all:       FALSE                              
    Pool 3                   
      Segment:                 GROUP                              
      Size:                    64(0x40) KB                        
      Allocatable:             FALSE                              
      Alloc Granule:           0KB                                
      Alloc Alignment:         0KB                                
      Accessible by all:       FALSE                              
  ISA Info:                
    ISA 1                    
      Name:                    amdgcn-amd-amdhsa--gfx1030         
      Machine Models:          HSA_MACHINE_MODEL_LARGE            
      Profiles:                HSA_PROFILE_BASE                   
      Default Rounding Mode:   NEAR                               
      Default Rounding Mode:   NEAR                               
      Fast f16:                TRUE                               
      Workgroup Max Size:      1024(0x400)                        
      Workgroup Max Size per Dimension:
        x                        1024(0x400)                        
        y                        1024(0x400)                        
        z                        1024(0x400)                        
      Grid Max Size:           4294967295(0xffffffff)             
      Grid Max Size per Dimension:
        x                        4294967295(0xffffffff)             
        y                        4294967295(0xffffffff)             
        z                        4294967295(0xffffffff)             
      FBarrier Max Size:       32                                 
*** Done ***
lscpu
Architecture:            x86_64
  CPU op-mode(s):        32-bit, 64-bit
  Address sizes:         48 bits physical, 48 bits virtual
  Byte Order:            Little Endian
CPU(s):                  32
  On-line CPU(s) list:   0-31
Vendor ID:               AuthenticAMD
  Model name:            AMD Ryzen 9 7950X 16-Core Processor
    CPU family:          25
    Model:               97
    Thread(s) per core:  2
    Core(s) per socket:  16
    Socket(s):           1
    Stepping:            2
    CPU(s) scaling MHz:  52%
    CPU max MHz:         6021.0000
    CPU min MHz:         400.0000
    BogoMIPS:            9000.59
    Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl nonstop_tsc cpuid extd_apicid aperfmperf ra
                         pl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perf
                         ctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt cl
                         wb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clea
                         n flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov s
                         uccor smca fsrm flush_l1d
Virtualization features: 
  Virtualization:        AMD-V
Caches (sum of all):     
  L1d:                   512 KiB (16 instances)
  L1i:                   512 KiB (16 instances)
  L2:                    16 MiB (16 instances)
  L3:                    64 MiB (2 instances)
NUMA:                    
  NUMA node(s):          1
  NUMA node0 CPU(s):     0-31
Vulnerabilities:         
  Gather data sampling:  Not affected
  Itlb multihit:         Not affected
  L1tf:                  Not affected
  Mds:                   Not affected
  Meltdown:              Not affected
  Mmio stale data:       Not affected
  Retbleed:              Not affected
  Spec rstack overflow:  Mitigation; safe RET, no microcode
  Spec store bypass:     Mitigation; Speculative Store Bypass disabled via prctl
  Spectre v1:            Mitigation; usercopy/swapgs barriers and __user pointer sanitization
  Spectre v2:            Mitigation; Enhanced / Automatic IBRS, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
  Srbds:                 Not affected
  Tsx async abort:       Not affected
  • Operating System, e.g. for Linux:
uname -a
Linux dc1a626b91a2 6.5.9-301.fsync.fc39.x86_64 #1 SMP PREEMPT_DYNAMIC Sat Oct 28 16:08:46 UTC 2023 x86_64 GNU/Linux
  • SDK version, e.g. for Linux:

ROCm 5.7.1

llamacpp 4a4fd3e

python3 --version
Python 3.11.5
make --version
GNU Make 4.4.1
Built for x86_64-pc-linux-gnu
Copyright (C) 1988-2023 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <https://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
g++ --version
g++ (GCC) 13.2.1 20230801
Copyright (C) 2023 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Failure Information (for bugs)

Provided below.

Steps to Reproduce

make LLAMA_HIPBLAS=1
I llama.cpp build info: 
I UNAME_S:   Linux
I UNAME_P:   unknown
I UNAME_M:   x86_64
I CFLAGS:    -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS  -std=c11   -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration -Wdouble-promotion -pthread -march=native -mtune=native 
I CXXFLAGS:  -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread  -Wno-array-bounds -Wno-format-truncation -Wextra-semi -march=native -mtune=native 
I NVCCFLAGS:  -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS  -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread    -Wno-pedantic -Xcompiler "-Wno-array-bounds -Wno-format-truncation -Wextra-semi -march=native -mtune=native "
I LDFLAGS:   -L/opt/rocm/lib -Wl,-rpath=/opt/rocm/lib -lhipblas -lamdhip64 -lrocblas 
I CC:        cc (GCC) 13.2.1 20230801
I CXX:       g++ (GCC) 13.2.1 20230801


(Removed build log, no errors)
./main -ngl 99 -m ../koboldcpp/models/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/mistral-7b-instruct-v0.1.Q5_K_M.gguf -mg 0 -p "Write a function in TypeScript that sums numbers"
Log start
main: build = 1503 (4a4fd3e)
main: built with cc (GCC) 13.2.1 20230801 for x86_64-pc-linux-gnu
main: seed  = 1699662201
ggml_init_cublas: GGML_CUDA_FORCE_MMQ:   no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 2 ROCm devices:
  Device 0: AMD Radeon RX 7900 XTX, compute capability 11.0
  Device 1: AMD Radeon RX 6900 XT, compute capability 10.3
llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from ../koboldcpp/models/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/mistral-7b-instruct-v0.1.Q5_K_M.gguf (version GGUF V2)
llama_model_loader: - tensor    0:                token_embd.weight q5_K     [  4096, 32000,     1,     1 ]
llama_model_loader: - tensor    1:              blk.0.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    2:              blk.0.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor    3:              blk.0.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor    4:         blk.0.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    5:            blk.0.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor    6:              blk.0.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor    7:            blk.0.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor    8:           blk.0.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor    9:            blk.0.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   10:              blk.1.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   11:              blk.1.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   12:              blk.1.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   13:         blk.1.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   14:            blk.1.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   15:              blk.1.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   16:            blk.1.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   17:           blk.1.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   18:            blk.1.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   19:              blk.2.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   20:              blk.2.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   21:              blk.2.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   22:         blk.2.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   23:            blk.2.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   24:              blk.2.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   25:            blk.2.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   26:           blk.2.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   27:            blk.2.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   28:              blk.3.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   29:              blk.3.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   30:              blk.3.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   31:         blk.3.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   32:            blk.3.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   33:              blk.3.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   34:            blk.3.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   35:           blk.3.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   36:            blk.3.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   37:              blk.4.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   38:              blk.4.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   39:              blk.4.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   40:         blk.4.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   41:            blk.4.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   42:              blk.4.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   43:            blk.4.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   44:           blk.4.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   45:            blk.4.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   46:              blk.5.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   47:              blk.5.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   48:              blk.5.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   49:         blk.5.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   50:            blk.5.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   51:              blk.5.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   52:            blk.5.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   53:           blk.5.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   54:            blk.5.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   55:              blk.6.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   56:              blk.6.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   57:              blk.6.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   58:         blk.6.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   59:            blk.6.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   60:              blk.6.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   61:            blk.6.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   62:           blk.6.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   63:            blk.6.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   64:              blk.7.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   65:              blk.7.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   66:              blk.7.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   67:         blk.7.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   68:            blk.7.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   69:              blk.7.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   70:            blk.7.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   71:           blk.7.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   72:            blk.7.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   73:              blk.8.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   74:              blk.8.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   75:              blk.8.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   76:         blk.8.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   77:            blk.8.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   78:              blk.8.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   79:            blk.8.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   80:           blk.8.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   81:            blk.8.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   82:              blk.9.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   83:              blk.9.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   84:              blk.9.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   85:         blk.9.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   86:            blk.9.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   87:              blk.9.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   88:            blk.9.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   89:           blk.9.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   90:            blk.9.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   91:             blk.10.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   92:             blk.10.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   93:             blk.10.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor   94:        blk.10.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   95:           blk.10.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   96:             blk.10.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor   97:           blk.10.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor   98:          blk.10.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   99:           blk.10.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  100:             blk.11.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  101:             blk.11.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  102:             blk.11.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  103:        blk.11.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  104:           blk.11.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  105:             blk.11.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  106:           blk.11.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  107:          blk.11.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  108:           blk.11.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  109:             blk.12.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  110:             blk.12.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  111:             blk.12.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  112:        blk.12.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  113:           blk.12.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  114:             blk.12.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  115:           blk.12.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  116:          blk.12.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  117:           blk.12.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  118:             blk.13.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  119:             blk.13.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  120:             blk.13.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  121:        blk.13.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  122:           blk.13.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  123:             blk.13.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  124:           blk.13.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  125:          blk.13.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  126:           blk.13.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  127:             blk.14.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  128:             blk.14.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  129:             blk.14.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  130:        blk.14.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  131:           blk.14.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  132:             blk.14.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  133:           blk.14.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  134:          blk.14.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  135:           blk.14.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  136:             blk.15.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  137:             blk.15.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  138:             blk.15.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  139:        blk.15.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  140:           blk.15.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  141:             blk.15.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  142:           blk.15.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  143:          blk.15.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  144:           blk.15.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  145:             blk.16.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  146:             blk.16.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  147:             blk.16.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  148:        blk.16.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  149:           blk.16.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  150:             blk.16.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  151:           blk.16.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  152:          blk.16.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  153:           blk.16.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  154:             blk.17.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  155:             blk.17.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  156:             blk.17.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  157:        blk.17.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  158:           blk.17.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  159:             blk.17.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  160:           blk.17.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  161:          blk.17.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  162:           blk.17.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  163:             blk.18.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  164:             blk.18.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  165:             blk.18.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  166:        blk.18.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  167:           blk.18.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  168:             blk.18.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  169:           blk.18.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  170:          blk.18.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  171:           blk.18.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  172:             blk.19.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  173:             blk.19.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  174:             blk.19.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  175:        blk.19.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  176:           blk.19.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  177:             blk.19.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  178:           blk.19.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  179:          blk.19.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  180:           blk.19.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  181:             blk.20.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  182:             blk.20.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  183:             blk.20.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  184:        blk.20.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  185:           blk.20.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  186:             blk.20.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  187:           blk.20.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  188:          blk.20.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  189:           blk.20.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  190:             blk.21.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  191:             blk.21.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  192:             blk.21.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  193:        blk.21.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  194:           blk.21.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  195:             blk.21.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  196:           blk.21.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  197:          blk.21.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  198:           blk.21.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  199:             blk.22.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  200:             blk.22.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  201:             blk.22.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  202:        blk.22.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  203:           blk.22.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  204:             blk.22.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  205:           blk.22.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  206:          blk.22.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  207:           blk.22.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  208:             blk.23.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  209:             blk.23.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  210:             blk.23.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  211:        blk.23.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  212:           blk.23.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  213:             blk.23.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  214:           blk.23.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  215:          blk.23.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  216:           blk.23.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  217:             blk.24.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  218:             blk.24.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  219:             blk.24.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  220:        blk.24.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  221:           blk.24.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  222:             blk.24.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  223:           blk.24.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  224:          blk.24.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  225:           blk.24.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  226:             blk.25.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  227:             blk.25.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  228:             blk.25.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  229:        blk.25.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  230:           blk.25.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  231:             blk.25.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  232:           blk.25.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  233:          blk.25.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  234:           blk.25.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  235:             blk.26.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  236:             blk.26.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  237:             blk.26.attn_v.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  238:        blk.26.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  239:           blk.26.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  240:             blk.26.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  241:           blk.26.ffn_down.weight q5_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  242:          blk.26.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  243:           blk.26.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  244:             blk.27.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  245:             blk.27.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  246:             blk.27.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  247:        blk.27.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  248:           blk.27.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  249:             blk.27.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  250:           blk.27.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  251:          blk.27.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  252:           blk.27.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  253:             blk.28.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  254:             blk.28.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  255:             blk.28.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  256:        blk.28.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  257:           blk.28.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  258:             blk.28.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  259:           blk.28.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  260:          blk.28.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  261:           blk.28.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  262:             blk.29.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  263:             blk.29.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  264:             blk.29.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  265:        blk.29.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  266:           blk.29.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  267:             blk.29.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  268:           blk.29.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  269:          blk.29.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  270:           blk.29.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  271:             blk.30.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  272:             blk.30.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  273:             blk.30.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  274:        blk.30.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  275:           blk.30.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  276:             blk.30.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  277:           blk.30.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  278:          blk.30.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  279:           blk.30.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  280:             blk.31.attn_q.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  281:             blk.31.attn_k.weight q5_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  282:             blk.31.attn_v.weight q6_K     [  4096,  1024,     1,     1 ]
llama_model_loader: - tensor  283:        blk.31.attn_output.weight q5_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  284:           blk.31.ffn_gate.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  285:             blk.31.ffn_up.weight q5_K     [  4096, 14336,     1,     1 ]
llama_model_loader: - tensor  286:           blk.31.ffn_down.weight q6_K     [ 14336,  4096,     1,     1 ]
llama_model_loader: - tensor  287:          blk.31.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  288:           blk.31.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  289:               output_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  290:                    output.weight q6_K     [  4096, 32000,     1,     1 ]
llama_model_loader: - kv   0:                       general.architecture str     
llama_model_loader: - kv   1:                               general.name str     
llama_model_loader: - kv   2:                       llama.context_length u32     
llama_model_loader: - kv   3:                     llama.embedding_length u32     
llama_model_loader: - kv   4:                          llama.block_count u32     
llama_model_loader: - kv   5:                  llama.feed_forward_length u32     
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32     
llama_model_loader: - kv   7:                 llama.attention.head_count u32     
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32     
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32     
llama_model_loader: - kv  10:                       llama.rope.freq_base f32     
llama_model_loader: - kv  11:                          general.file_type u32     
llama_model_loader: - kv  12:                       tokenizer.ggml.model str     
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr     
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr     
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr     
llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32     
llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32     
llama_model_loader: - kv  18:            tokenizer.ggml.unknown_token_id u32     
llama_model_loader: - kv  19:               general.quantization_version u32     
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q5_K:  193 tensors
llama_model_loader: - type q6_K:   33 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format           = GGUF V2
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 32768
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 14336
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 32768
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = mostly Q5_K - Medium
llm_load_print_meta: model params     = 7.24 B
llm_load_print_meta: model size       = 4.78 GiB (5.67 BPW) 
llm_load_print_meta: general.name   = mistralai_mistral-7b-instruct-v0.1
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token  = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.11 MB
llm_load_tensors: using ROCm for GPU acceleration
ggml_cuda_set_main_device: using device 0 (AMD Radeon RX 7900 XTX) as main device
llm_load_tensors: mem required  =   86.04 MB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 35/35 layers to GPU
llm_load_tensors: VRAM used: 4807.05 MB
..................................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: offloading v cache to GPU
llama_kv_cache_init: offloading k cache to GPU
llama_kv_cache_init: VRAM kv self = 64.00 MB
llama_new_context_with_model: kv self size  =   64.00 MB
llama_build_graph: non-view tensors processed: 740/740
llama_new_context_with_model: compute buffer total size = 79.63 MB
llama_new_context_with_model: VRAM scratch buffer: 73.00 MB
llama_new_context_with_model: total VRAM used: 4944.06 MB (model: 4807.05 MB, context: 137.00 MB)
fish: Job 1, './main -ngl 99 -m ../koboldcpp/…' terminated by signal SIGSEGV (Address boundary error)

Failure Logs

Provided above.

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions