Closed
Description
Prerequisites
Please answer the following questions for yourself before submitting an issue.
- I am running the latest code. Development is very rapid so there are no tagged versions as of now.
- I carefully followed the README.md.
- I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
- I reviewed the Discussions, and have a new bug or useful enhancement to share.
Expected Behavior
NA
Current Behavior
Segmentation fault after model load for ROCm multi-gpu, multi-gfx. Best I can remember it worked a couple months ago, but has now been broken at least 2 weeks.
Environment and Context
- Physical (or virtual) hardware you are using, e.g. for Linux:
rocminfo
ROCk module is loaded
=====================
HSA System Attributes
=====================
Runtime Version: 1.1
System Timestamp Freq.: 1000.000000MHz
Sig. Max Wait Duration: 18446744073709551615 (0xFFFFFFFFFFFFFFFF) (timestamp count)
Machine Model: LARGE
System Endianness: LITTLE
Mwaitx: DISABLED
DMAbuf Support: YES
==========
HSA Agents
==========
*******
Agent 1
*******
Name: AMD Ryzen 9 7950X 16-Core Processor
Uuid: CPU-XX
Marketing Name: AMD Ryzen 9 7950X 16-Core Processor
Vendor Name: CPU
Feature: None specified
Profile: FULL_PROFILE
Float Round Mode: NEAR
Max Queue Number: 0(0x0)
Queue Min Size: 0(0x0)
Queue Max Size: 0(0x0)
Queue Type: MULTI
Node: 0
Device Type: CPU
Cache Info:
L1: 32768(0x8000) KB
Chip ID: 0(0x0)
ASIC Revision: 0(0x0)
Cacheline Size: 64(0x40)
Max Clock Freq. (MHz): 6021
BDFID: 0
Internal Node ID: 0
Compute Unit: 32
SIMDs per CU: 0
Shader Engines: 0
Shader Arrs. per Eng.: 0
WatchPts on Addr. Ranges:1
Features: None
Pool Info:
Pool 1
Segment: GLOBAL; FLAGS: FINE GRAINED
Size: 65539100(0x3e80c1c) KB
Allocatable: TRUE
Alloc Granule: 4KB
Alloc Alignment: 4KB
Accessible by all: TRUE
Pool 2
Segment: GLOBAL; FLAGS: KERNARG, FINE GRAINED
Size: 65539100(0x3e80c1c) KB
Allocatable: TRUE
Alloc Granule: 4KB
Alloc Alignment: 4KB
Accessible by all: TRUE
Pool 3
Segment: GLOBAL; FLAGS: COARSE GRAINED
Size: 65539100(0x3e80c1c) KB
Allocatable: TRUE
Alloc Granule: 4KB
Alloc Alignment: 4KB
Accessible by all: TRUE
ISA Info:
*******
Agent 2
*******
Name: gfx1100
Uuid: GPU-28b5961221d81024
Marketing Name: AMD Radeon RX 7900 XTX
Vendor Name: AMD
Feature: KERNEL_DISPATCH
Profile: BASE_PROFILE
Float Round Mode: NEAR
Max Queue Number: 128(0x80)
Queue Min Size: 64(0x40)
Queue Max Size: 131072(0x20000)
Queue Type: MULTI
Node: 1
Device Type: GPU
Cache Info:
L1: 32(0x20) KB
L2: 6144(0x1800) KB
L3: 98304(0x18000) KB
Chip ID: 29772(0x744c)
ASIC Revision: 0(0x0)
Cacheline Size: 64(0x40)
Max Clock Freq. (MHz): 2526
BDFID: 768
Internal Node ID: 1
Compute Unit: 96
SIMDs per CU: 2
Shader Engines: 6
Shader Arrs. per Eng.: 2
WatchPts on Addr. Ranges:4
Features: KERNEL_DISPATCH
Fast F16 Operation: TRUE
Wavefront Size: 32(0x20)
Workgroup Max Size: 1024(0x400)
Workgroup Max Size per Dimension:
x 1024(0x400)
y 1024(0x400)
z 1024(0x400)
Max Waves Per CU: 32(0x20)
Max Work-item Per CU: 1024(0x400)
Grid Max Size: 4294967295(0xffffffff)
Grid Max Size per Dimension:
x 4294967295(0xffffffff)
y 4294967295(0xffffffff)
z 4294967295(0xffffffff)
Max fbarriers/Workgrp: 32
Packet Processor uCode:: 528
SDMA engine uCode:: 19
IOMMU Support:: None
Pool Info:
Pool 1
Segment: GLOBAL; FLAGS: COARSE GRAINED
Size: 25149440(0x17fc000) KB
Allocatable: TRUE
Alloc Granule: 4KB
Alloc Alignment: 4KB
Accessible by all: FALSE
Pool 2
Segment: GLOBAL; FLAGS:
Size: 25149440(0x17fc000) KB
Allocatable: TRUE
Alloc Granule: 4KB
Alloc Alignment: 4KB
Accessible by all: FALSE
Pool 3
Segment: GROUP
Size: 64(0x40) KB
Allocatable: FALSE
Alloc Granule: 0KB
Alloc Alignment: 0KB
Accessible by all: FALSE
ISA Info:
ISA 1
Name: amdgcn-amd-amdhsa--gfx1100
Machine Models: HSA_MACHINE_MODEL_LARGE
Profiles: HSA_PROFILE_BASE
Default Rounding Mode: NEAR
Default Rounding Mode: NEAR
Fast f16: TRUE
Workgroup Max Size: 1024(0x400)
Workgroup Max Size per Dimension:
x 1024(0x400)
y 1024(0x400)
z 1024(0x400)
Grid Max Size: 4294967295(0xffffffff)
Grid Max Size per Dimension:
x 4294967295(0xffffffff)
y 4294967295(0xffffffff)
z 4294967295(0xffffffff)
FBarrier Max Size: 32
*******
Agent 3
*******
Name: gfx1030
Uuid: GPU-8de346d621abe448
Marketing Name: AMD Radeon RX 6900 XT
Vendor Name: AMD
Feature: KERNEL_DISPATCH
Profile: BASE_PROFILE
Float Round Mode: NEAR
Max Queue Number: 128(0x80)
Queue Min Size: 64(0x40)
Queue Max Size: 131072(0x20000)
Queue Type: MULTI
Node: 2
Device Type: GPU
Cache Info:
L1: 16(0x10) KB
L2: 4096(0x1000) KB
L3: 131072(0x20000) KB
Chip ID: 29615(0x73af)
ASIC Revision: 1(0x1)
Cacheline Size: 64(0x40)
Max Clock Freq. (MHz): 2720
BDFID: 1792
Internal Node ID: 2
Compute Unit: 80
SIMDs per CU: 2
Shader Engines: 4
Shader Arrs. per Eng.: 2
WatchPts on Addr. Ranges:4
Features: KERNEL_DISPATCH
Fast F16 Operation: TRUE
Wavefront Size: 32(0x20)
Workgroup Max Size: 1024(0x400)
Workgroup Max Size per Dimension:
x 1024(0x400)
y 1024(0x400)
z 1024(0x400)
Max Waves Per CU: 32(0x20)
Max Work-item Per CU: 1024(0x400)
Grid Max Size: 4294967295(0xffffffff)
Grid Max Size per Dimension:
x 4294967295(0xffffffff)
y 4294967295(0xffffffff)
z 4294967295(0xffffffff)
Max fbarriers/Workgrp: 32
Packet Processor uCode:: 115
SDMA engine uCode:: 83
IOMMU Support:: None
Pool Info:
Pool 1
Segment: GLOBAL; FLAGS: COARSE GRAINED
Size: 16760832(0xffc000) KB
Allocatable: TRUE
Alloc Granule: 4KB
Alloc Alignment: 4KB
Accessible by all: FALSE
Pool 2
Segment: GLOBAL; FLAGS:
Size: 16760832(0xffc000) KB
Allocatable: TRUE
Alloc Granule: 4KB
Alloc Alignment: 4KB
Accessible by all: FALSE
Pool 3
Segment: GROUP
Size: 64(0x40) KB
Allocatable: FALSE
Alloc Granule: 0KB
Alloc Alignment: 0KB
Accessible by all: FALSE
ISA Info:
ISA 1
Name: amdgcn-amd-amdhsa--gfx1030
Machine Models: HSA_MACHINE_MODEL_LARGE
Profiles: HSA_PROFILE_BASE
Default Rounding Mode: NEAR
Default Rounding Mode: NEAR
Fast f16: TRUE
Workgroup Max Size: 1024(0x400)
Workgroup Max Size per Dimension:
x 1024(0x400)
y 1024(0x400)
z 1024(0x400)
Grid Max Size: 4294967295(0xffffffff)
Grid Max Size per Dimension:
x 4294967295(0xffffffff)
y 4294967295(0xffffffff)
z 4294967295(0xffffffff)
FBarrier Max Size: 32
*** Done ***
lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: AuthenticAMD
Model name: AMD Ryzen 9 7950X 16-Core Processor
CPU family: 25
Model: 97
Thread(s) per core: 2
Core(s) per socket: 16
Socket(s): 1
Stepping: 2
CPU(s) scaling MHz: 52%
CPU max MHz: 6021.0000
CPU min MHz: 400.0000
BogoMIPS: 9000.59
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl nonstop_tsc cpuid extd_apicid aperfmperf ra
pl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perf
ctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt cl
wb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clea
n flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov s
uccor smca fsrm flush_l1d
Virtualization features:
Virtualization: AMD-V
Caches (sum of all):
L1d: 512 KiB (16 instances)
L1i: 512 KiB (16 instances)
L2: 16 MiB (16 instances)
L3: 64 MiB (2 instances)
NUMA:
NUMA node(s): 1
NUMA node0 CPU(s): 0-31
Vulnerabilities:
Gather data sampling: Not affected
Itlb multihit: Not affected
L1tf: Not affected
Mds: Not affected
Meltdown: Not affected
Mmio stale data: Not affected
Retbleed: Not affected
Spec rstack overflow: Mitigation; safe RET, no microcode
Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Spectre v2: Mitigation; Enhanced / Automatic IBRS, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Srbds: Not affected
Tsx async abort: Not affected
- Operating System, e.g. for Linux:
uname -a
Linux dc1a626b91a2 6.5.9-301.fsync.fc39.x86_64 #1 SMP PREEMPT_DYNAMIC Sat Oct 28 16:08:46 UTC 2023 x86_64 GNU/Linux
- SDK version, e.g. for Linux:
ROCm 5.7.1
llamacpp 4a4fd3e
python3 --version
Python 3.11.5
make --version
GNU Make 4.4.1
Built for x86_64-pc-linux-gnu
Copyright (C) 1988-2023 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <https://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
g++ --version
g++ (GCC) 13.2.1 20230801
Copyright (C) 2023 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Failure Information (for bugs)
Provided below.
Steps to Reproduce
make LLAMA_HIPBLAS=1
I llama.cpp build info:
I UNAME_S: Linux
I UNAME_P: unknown
I UNAME_M: x86_64
I CFLAGS: -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS -std=c11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration -Wdouble-promotion -pthread -march=native -mtune=native
I CXXFLAGS: -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread -Wno-array-bounds -Wno-format-truncation -Wextra-semi -march=native -mtune=native
I NVCCFLAGS: -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS -std=c++11 -fPIC -O3 -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wmissing-declarations -Wmissing-noreturn -pthread -Wno-pedantic -Xcompiler "-Wno-array-bounds -Wno-format-truncation -Wextra-semi -march=native -mtune=native "
I LDFLAGS: -L/opt/rocm/lib -Wl,-rpath=/opt/rocm/lib -lhipblas -lamdhip64 -lrocblas
I CC: cc (GCC) 13.2.1 20230801
I CXX: g++ (GCC) 13.2.1 20230801
(Removed build log, no errors)
./main -ngl 99 -m ../koboldcpp/models/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/mistral-7b-instruct-v0.1.Q5_K_M.gguf -mg 0 -p "Write a function in TypeScript that sums numbers"
Log start
main: build = 1503 (4a4fd3e)
main: built with cc (GCC) 13.2.1 20230801 for x86_64-pc-linux-gnu
main: seed = 1699662201
ggml_init_cublas: GGML_CUDA_FORCE_MMQ: no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 2 ROCm devices:
Device 0: AMD Radeon RX 7900 XTX, compute capability 11.0
Device 1: AMD Radeon RX 6900 XT, compute capability 10.3
llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from ../koboldcpp/models/TheBloke/Mistral-7B-Instruct-v0.1-GGUF/mistral-7b-instruct-v0.1.Q5_K_M.gguf (version GGUF V2)
llama_model_loader: - tensor 0: token_embd.weight q5_K [ 4096, 32000, 1, 1 ]
llama_model_loader: - tensor 1: blk.0.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 2: blk.0.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 3: blk.0.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 4: blk.0.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 5: blk.0.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 6: blk.0.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 7: blk.0.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 8: blk.0.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 9: blk.0.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 10: blk.1.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 11: blk.1.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 12: blk.1.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 13: blk.1.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 14: blk.1.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 15: blk.1.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 16: blk.1.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 17: blk.1.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 18: blk.1.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 19: blk.2.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 20: blk.2.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 21: blk.2.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 22: blk.2.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 23: blk.2.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 24: blk.2.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 25: blk.2.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 26: blk.2.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 27: blk.2.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 28: blk.3.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 29: blk.3.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 30: blk.3.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 31: blk.3.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 32: blk.3.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 33: blk.3.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 34: blk.3.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 35: blk.3.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 36: blk.3.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 37: blk.4.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 38: blk.4.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 39: blk.4.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 40: blk.4.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 41: blk.4.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 42: blk.4.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 43: blk.4.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 44: blk.4.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 45: blk.4.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 46: blk.5.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 47: blk.5.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 48: blk.5.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 49: blk.5.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 50: blk.5.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 51: blk.5.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 52: blk.5.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 53: blk.5.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 54: blk.5.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 55: blk.6.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 56: blk.6.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 57: blk.6.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 58: blk.6.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 59: blk.6.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 60: blk.6.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 61: blk.6.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 62: blk.6.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 63: blk.6.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 64: blk.7.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 65: blk.7.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 66: blk.7.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 67: blk.7.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 68: blk.7.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 69: blk.7.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 70: blk.7.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 71: blk.7.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 72: blk.7.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 73: blk.8.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 74: blk.8.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 75: blk.8.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 76: blk.8.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 77: blk.8.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 78: blk.8.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 79: blk.8.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 80: blk.8.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 81: blk.8.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 82: blk.9.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 83: blk.9.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 84: blk.9.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 85: blk.9.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 86: blk.9.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 87: blk.9.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 88: blk.9.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 89: blk.9.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 90: blk.9.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 91: blk.10.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 92: blk.10.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 93: blk.10.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 94: blk.10.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 95: blk.10.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 96: blk.10.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 97: blk.10.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 98: blk.10.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 99: blk.10.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 100: blk.11.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 101: blk.11.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 102: blk.11.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 103: blk.11.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 104: blk.11.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 105: blk.11.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 106: blk.11.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 107: blk.11.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 108: blk.11.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 109: blk.12.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 110: blk.12.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 111: blk.12.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 112: blk.12.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 113: blk.12.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 114: blk.12.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 115: blk.12.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 116: blk.12.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 117: blk.12.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 118: blk.13.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 119: blk.13.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 120: blk.13.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 121: blk.13.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 122: blk.13.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 123: blk.13.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 124: blk.13.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 125: blk.13.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 126: blk.13.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 127: blk.14.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 128: blk.14.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 129: blk.14.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 130: blk.14.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 131: blk.14.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 132: blk.14.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 133: blk.14.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 134: blk.14.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 135: blk.14.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 136: blk.15.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 137: blk.15.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 138: blk.15.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 139: blk.15.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 140: blk.15.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 141: blk.15.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 142: blk.15.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 143: blk.15.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 144: blk.15.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 145: blk.16.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 146: blk.16.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 147: blk.16.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 148: blk.16.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 149: blk.16.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 150: blk.16.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 151: blk.16.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 152: blk.16.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 153: blk.16.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 154: blk.17.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 155: blk.17.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 156: blk.17.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 157: blk.17.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 158: blk.17.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 159: blk.17.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 160: blk.17.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 161: blk.17.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 162: blk.17.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 163: blk.18.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 164: blk.18.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 165: blk.18.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 166: blk.18.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 167: blk.18.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 168: blk.18.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 169: blk.18.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 170: blk.18.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 171: blk.18.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 172: blk.19.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 173: blk.19.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 174: blk.19.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 175: blk.19.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 176: blk.19.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 177: blk.19.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 178: blk.19.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 179: blk.19.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 180: blk.19.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 181: blk.20.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 182: blk.20.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 183: blk.20.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 184: blk.20.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 185: blk.20.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 186: blk.20.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 187: blk.20.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 188: blk.20.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 189: blk.20.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 190: blk.21.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 191: blk.21.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 192: blk.21.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 193: blk.21.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 194: blk.21.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 195: blk.21.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 196: blk.21.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 197: blk.21.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 198: blk.21.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 199: blk.22.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 200: blk.22.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 201: blk.22.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 202: blk.22.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 203: blk.22.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 204: blk.22.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 205: blk.22.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 206: blk.22.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 207: blk.22.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 208: blk.23.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 209: blk.23.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 210: blk.23.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 211: blk.23.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 212: blk.23.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 213: blk.23.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 214: blk.23.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 215: blk.23.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 216: blk.23.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 217: blk.24.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 218: blk.24.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 219: blk.24.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 220: blk.24.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 221: blk.24.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 222: blk.24.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 223: blk.24.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 224: blk.24.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 225: blk.24.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 226: blk.25.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 227: blk.25.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 228: blk.25.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 229: blk.25.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 230: blk.25.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 231: blk.25.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 232: blk.25.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 233: blk.25.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 234: blk.25.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 235: blk.26.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 236: blk.26.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 237: blk.26.attn_v.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 238: blk.26.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 239: blk.26.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 240: blk.26.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 241: blk.26.ffn_down.weight q5_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 242: blk.26.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 243: blk.26.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 244: blk.27.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 245: blk.27.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 246: blk.27.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 247: blk.27.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 248: blk.27.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 249: blk.27.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 250: blk.27.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 251: blk.27.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 252: blk.27.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 253: blk.28.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 254: blk.28.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 255: blk.28.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 256: blk.28.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 257: blk.28.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 258: blk.28.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 259: blk.28.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 260: blk.28.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 261: blk.28.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 262: blk.29.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 263: blk.29.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 264: blk.29.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 265: blk.29.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 266: blk.29.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 267: blk.29.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 268: blk.29.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 269: blk.29.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 270: blk.29.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 271: blk.30.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 272: blk.30.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 273: blk.30.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 274: blk.30.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 275: blk.30.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 276: blk.30.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 277: blk.30.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 278: blk.30.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 279: blk.30.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 280: blk.31.attn_q.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 281: blk.31.attn_k.weight q5_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 282: blk.31.attn_v.weight q6_K [ 4096, 1024, 1, 1 ]
llama_model_loader: - tensor 283: blk.31.attn_output.weight q5_K [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 284: blk.31.ffn_gate.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 285: blk.31.ffn_up.weight q5_K [ 4096, 14336, 1, 1 ]
llama_model_loader: - tensor 286: blk.31.ffn_down.weight q6_K [ 14336, 4096, 1, 1 ]
llama_model_loader: - tensor 287: blk.31.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 288: blk.31.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 289: output_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 290: output.weight q6_K [ 4096, 32000, 1, 1 ]
llama_model_loader: - kv 0: general.architecture str
llama_model_loader: - kv 1: general.name str
llama_model_loader: - kv 2: llama.context_length u32
llama_model_loader: - kv 3: llama.embedding_length u32
llama_model_loader: - kv 4: llama.block_count u32
llama_model_loader: - kv 5: llama.feed_forward_length u32
llama_model_loader: - kv 6: llama.rope.dimension_count u32
llama_model_loader: - kv 7: llama.attention.head_count u32
llama_model_loader: - kv 8: llama.attention.head_count_kv u32
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32
llama_model_loader: - kv 10: llama.rope.freq_base f32
llama_model_loader: - kv 11: general.file_type u32
llama_model_loader: - kv 12: tokenizer.ggml.model str
llama_model_loader: - kv 13: tokenizer.ggml.tokens arr
llama_model_loader: - kv 14: tokenizer.ggml.scores arr
llama_model_loader: - kv 15: tokenizer.ggml.token_type arr
llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32
llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32
llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32
llama_model_loader: - kv 19: general.quantization_version u32
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type q5_K: 193 tensors
llama_model_loader: - type q6_K: 33 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format = GGUF V2
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 32768
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_gqa = 4
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff = 14336
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 32768
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: model type = 7B
llm_load_print_meta: model ftype = mostly Q5_K - Medium
llm_load_print_meta: model params = 7.24 B
llm_load_print_meta: model size = 4.78 GiB (5.67 BPW)
llm_load_print_meta: general.name = mistralai_mistral-7b-instruct-v0.1
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.11 MB
llm_load_tensors: using ROCm for GPU acceleration
ggml_cuda_set_main_device: using device 0 (AMD Radeon RX 7900 XTX) as main device
llm_load_tensors: mem required = 86.04 MB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 35/35 layers to GPU
llm_load_tensors: VRAM used: 4807.05 MB
..................................................................................................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: offloading v cache to GPU
llama_kv_cache_init: offloading k cache to GPU
llama_kv_cache_init: VRAM kv self = 64.00 MB
llama_new_context_with_model: kv self size = 64.00 MB
llama_build_graph: non-view tensors processed: 740/740
llama_new_context_with_model: compute buffer total size = 79.63 MB
llama_new_context_with_model: VRAM scratch buffer: 73.00 MB
llama_new_context_with_model: total VRAM used: 4944.06 MB (model: 4807.05 MB, context: 137.00 MB)
fish: Job 1, './main -ngl 99 -m ../koboldcpp/…' terminated by signal SIGSEGV (Address boundary error)
Failure Logs
Provided above.