Skip to content

parallel.cpp exits when encountering a long prompt. #4086

Closed
@littlebai3618

Description

@littlebai3618

Prerequisites

Please answer the following questions for yourself before submitting an issue.

  • I am running the latest code. Development is very rapid so there are no tagged versions as of now.
  • I carefully followed the README.md.
  • I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
  • I reviewed the Discussions, and have a new bug or useful enhancement to share.

Expected Behavior

In ./examples/parallel/parallel.cpp, I added the following two lines to the final output:

int cache_count = llama_get_kv_cache_token_count(ctx);
LOG_TEE("Cache KV size %d", cache_count);

I believe that the logic in line 221 of parallel.cpp:

// all sequences have ended - clear the entire KV cache
for (int i = 0; i < n_clients; ++i) {
   llama_kv_cache_seq_rm(ctx, i, n_tokens_system, -1);
}

should release all the occupied cache when the entire task is completed. However, in reality, it does not release the cache.

Current Behavior

I expected the value of cache_count to be 0, but in reality, it is 1153.

Environment and Context

  1. GPU info
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.85.05    Driver Version: 525.85.05    CUDA Version: 12.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Quadro RTX 8000     Off  | 00000000:3B:00.0 Off |                  N/A |
| 33%   29C    P8    22W / 260W |      0MiB / 49152MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+
  1. make cmd
LLAMA_CUDA_NVCC=/usr/local/cuda-12/bin/nvcc make LLAMA_CUBLAS=1 -Wdeprecated-declarations
  1. test cmd
./parallel -m ./CodeLlama-7B/ggml-model-q8_0.gguf -n -1 -c 16324 -b 4096 --cont_batching --parallel 10 --sequences 600 --n-gpu-layers 1000
  1. model

It appears that you are using the "CodeLlama-7B-HF" model from the repository you mentioned (https://huggingface.co/codellama/CodeLlama-7b-hf). You mentioned that you performed the conversion using the "convert.py" script included in the repository.

$ lscpu

Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   46 bits physical, 48 bits virtual
CPU(s):                          64
On-line CPU(s) list:             0-63
Thread(s) per core:              2
Core(s) per socket:              16
Socket(s):                       2
NUMA node(s):                    2
Vendor ID:                       GenuineIntel
CPU family:                      6
Model:                           85
Model name:                      Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
Stepping:                        7
CPU MHz:                         1693.308
CPU max MHz:                     3900.0000
CPU min MHz:                     1000.0000
BogoMIPS:                        4600.00
Virtualization:                  VT-x
L1d cache:                       1 MiB
L1i cache:                       1 MiB
L2 cache:                        32 MiB
L3 cache:                        44 MiB
  • Operating System, e.g. for Linux:

$ uname -a

Linux studio-0 4.19.96 #1 SMP Tue Mar 10 10:34:01 CST 2020 x86_64 x86_64 x86_64 GNU/Linux
  • SDK version, e.g. for Linux:
$ python3 --version 3.11.5
$ make --version  GNU Make 4.2.1
$ g++ --version  g++ (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0

Failure Information (for bugs)

I expected the value of cache_count to be 0, but in reality, it is 1153.

Steps to Reproduce

please download model from https://huggingface.co/codellama/CodeLlama-7b-hf

  1. python convert.py ./CodeLlama-7B/ --outtype q8_0
  2. after parallel.cpp's LOG_TEE("Cache misses: %6d\n", n_cache_miss); add
int cache_count = llama_get_kv_cache_token_count(ctx);
LOG_TEE("Cache KV size %d", cache_count);
  1. ./parallel -m ./CodeLlama-7B/ggml-model-q8_0.gguf -n -1 -c 16324 -b 4096 --cont_batching --parallel 10 --sequences 600 --n-gpu-layers 1000

Failure Logs

Example run with the Linux command perf

ggml_init_cublas: GGML_CUDA_FORCE_MMQ:   no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:
  Device 0: Quadro RTX 8000, compute capability 7.5
llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from /aistudio/workspace/system-default/models/CodeLlama-7B/ggml-model-q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: - tensor    0:                token_embd.weight q8_0     [  4096, 32016,     1,     1 ]
llama_model_loader: - tensor    1:           blk.0.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor    2:            blk.0.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor    3:            blk.0.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor    4:              blk.0.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor    5:            blk.0.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor    6:              blk.0.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    7:         blk.0.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    8:              blk.0.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    9:              blk.0.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   10:           blk.1.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   11:            blk.1.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   12:            blk.1.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   13:              blk.1.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   14:            blk.1.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   15:              blk.1.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   16:         blk.1.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   17:              blk.1.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   18:              blk.1.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   19:          blk.10.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   20:           blk.10.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   21:           blk.10.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   22:             blk.10.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   23:           blk.10.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   24:             blk.10.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   25:        blk.10.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   26:             blk.10.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   27:             blk.10.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   28:          blk.11.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   29:           blk.11.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   30:           blk.11.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   31:             blk.11.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   32:           blk.11.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   33:             blk.11.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   34:        blk.11.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   35:             blk.11.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   36:             blk.11.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   37:          blk.12.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   38:           blk.12.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   39:           blk.12.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   40:             blk.12.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   41:           blk.12.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   42:             blk.12.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   43:        blk.12.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   44:             blk.12.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   45:             blk.12.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   46:          blk.13.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   47:           blk.13.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   48:           blk.13.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   49:             blk.13.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   50:           blk.13.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   51:             blk.13.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   52:        blk.13.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   53:             blk.13.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   54:             blk.13.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   55:          blk.14.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   56:           blk.14.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   57:           blk.14.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   58:             blk.14.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   59:           blk.14.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   60:             blk.14.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   61:        blk.14.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   62:             blk.14.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   63:             blk.14.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   64:          blk.15.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   65:           blk.15.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   66:           blk.15.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   67:             blk.15.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   68:           blk.15.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   69:             blk.15.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   70:        blk.15.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   71:             blk.15.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   72:             blk.15.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   73:          blk.16.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   74:           blk.16.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   75:           blk.16.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   76:             blk.16.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   77:           blk.16.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   78:             blk.16.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   79:        blk.16.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   80:             blk.16.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   81:             blk.16.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   82:          blk.17.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   83:           blk.17.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   84:           blk.17.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   85:             blk.17.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   86:           blk.17.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   87:             blk.17.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   88:        blk.17.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   89:             blk.17.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   90:             blk.17.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   91:          blk.18.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   92:           blk.18.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   93:           blk.18.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   94:             blk.18.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   95:           blk.18.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   96:             blk.18.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   97:        blk.18.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   98:             blk.18.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   99:             blk.18.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  100:          blk.19.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  101:           blk.19.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  102:           blk.19.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  103:             blk.19.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  104:           blk.19.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  105:             blk.19.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  106:        blk.19.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  107:             blk.19.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  108:             blk.19.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  109:           blk.2.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  110:            blk.2.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  111:            blk.2.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  112:              blk.2.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  113:            blk.2.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  114:              blk.2.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  115:         blk.2.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  116:              blk.2.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  117:              blk.2.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  118:          blk.20.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  119:           blk.20.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  120:           blk.20.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  121:             blk.20.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  122:           blk.20.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  123:             blk.20.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  124:        blk.20.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  125:             blk.20.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  126:             blk.20.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  127:          blk.21.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  128:           blk.21.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  129:           blk.21.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  130:             blk.21.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  131:           blk.21.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  132:             blk.21.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  133:        blk.21.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  134:             blk.21.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  135:             blk.21.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  136:          blk.22.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  137:           blk.22.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  138:           blk.22.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  139:             blk.22.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  140:           blk.22.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  141:             blk.22.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  142:        blk.22.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  143:             blk.22.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  144:             blk.22.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  145:          blk.23.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  146:           blk.23.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  147:           blk.23.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  148:             blk.23.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  149:           blk.23.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  150:             blk.23.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  151:        blk.23.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  152:             blk.23.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  153:             blk.23.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  154:           blk.3.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  155:            blk.3.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  156:            blk.3.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  157:              blk.3.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  158:            blk.3.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  159:              blk.3.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  160:         blk.3.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  161:              blk.3.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  162:              blk.3.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  163:           blk.4.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  164:            blk.4.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  165:            blk.4.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  166:              blk.4.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  167:            blk.4.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  168:              blk.4.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  169:         blk.4.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  170:              blk.4.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  171:              blk.4.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  172:           blk.5.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  173:            blk.5.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  174:            blk.5.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  175:              blk.5.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  176:            blk.5.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  177:              blk.5.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  178:         blk.5.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  179:              blk.5.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  180:              blk.5.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  181:           blk.6.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  182:            blk.6.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  183:            blk.6.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  184:              blk.6.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  185:            blk.6.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  186:              blk.6.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  187:         blk.6.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  188:              blk.6.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  189:              blk.6.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  190:           blk.7.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  191:            blk.7.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  192:            blk.7.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  193:              blk.7.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  194:            blk.7.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  195:              blk.7.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  196:         blk.7.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  197:              blk.7.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  198:              blk.7.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  199:           blk.8.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  200:            blk.8.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  201:            blk.8.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  202:              blk.8.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  203:            blk.8.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  204:              blk.8.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  205:         blk.8.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  206:              blk.8.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  207:              blk.8.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  208:           blk.9.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  209:            blk.9.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  210:            blk.9.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  211:              blk.9.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  212:            blk.9.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  213:              blk.9.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  214:         blk.9.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  215:              blk.9.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  216:              blk.9.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  217:                    output.weight q8_0     [  4096, 32016,     1,     1 ]
llama_model_loader: - tensor  218:          blk.24.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  219:           blk.24.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  220:           blk.24.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  221:             blk.24.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  222:           blk.24.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  223:             blk.24.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  224:        blk.24.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  225:             blk.24.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  226:             blk.24.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  227:          blk.25.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  228:           blk.25.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  229:           blk.25.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  230:             blk.25.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  231:           blk.25.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  232:             blk.25.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  233:        blk.25.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  234:             blk.25.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  235:             blk.25.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  236:          blk.26.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  237:           blk.26.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  238:           blk.26.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  239:             blk.26.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  240:           blk.26.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  241:             blk.26.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  242:        blk.26.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  243:             blk.26.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  244:             blk.26.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  245:          blk.27.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  246:           blk.27.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  247:           blk.27.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  248:             blk.27.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  249:           blk.27.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  250:             blk.27.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  251:        blk.27.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  252:             blk.27.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  253:             blk.27.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  254:          blk.28.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  255:           blk.28.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  256:           blk.28.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  257:             blk.28.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  258:           blk.28.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  259:             blk.28.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  260:        blk.28.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  261:             blk.28.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  262:             blk.28.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  263:          blk.29.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  264:           blk.29.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  265:           blk.29.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  266:             blk.29.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  267:           blk.29.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  268:             blk.29.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  269:        blk.29.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  270:             blk.29.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  271:             blk.29.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  272:          blk.30.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  273:           blk.30.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  274:           blk.30.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  275:             blk.30.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  276:           blk.30.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  277:             blk.30.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  278:        blk.30.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  279:             blk.30.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  280:             blk.30.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  281:          blk.31.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  282:           blk.31.ffn_down.weight q8_0     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  283:           blk.31.ffn_gate.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  284:             blk.31.ffn_up.weight q8_0     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  285:           blk.31.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  286:             blk.31.attn_k.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  287:        blk.31.attn_output.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  288:             blk.31.attn_q.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  289:             blk.31.attn_v.weight q8_0     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  290:               output_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - kv   0:                       general.architecture str     
llama_model_loader: - kv   1:                               general.name str     
llama_model_loader: - kv   2:                       llama.context_length u32     
llama_model_loader: - kv   3:                     llama.embedding_length u32     
llama_model_loader: - kv   4:                          llama.block_count u32     
llama_model_loader: - kv   5:                  llama.feed_forward_length u32     
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32     
llama_model_loader: - kv   7:                 llama.attention.head_count u32     
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32     
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32     
llama_model_loader: - kv  10:                       llama.rope.freq_base f32     
llama_model_loader: - kv  11:                          general.file_type u32     
llama_model_loader: - kv  12:                       tokenizer.ggml.model str     
llama_model_loader: - kv  13:                      tokenizer.ggml.tokens arr     
llama_model_loader: - kv  14:                      tokenizer.ggml.scores arr     
llama_model_loader: - kv  15:                  tokenizer.ggml.token_type arr     
llama_model_loader: - kv  16:                tokenizer.ggml.bos_token_id u32     
llama_model_loader: - kv  17:                tokenizer.ggml.eos_token_id u32     
llama_model_loader: - kv  18:            tokenizer.ggml.unknown_token_id u32     
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q8_0:  226 tensors
llm_load_vocab: mismatch in special tokens definition ( 264/32016 vs 259/32016 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32016
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 16384
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 11008
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 16384
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = mostly Q8_0
llm_load_print_meta: model params     = 6.74 B
llm_load_print_meta: model size       = 6.67 GiB (8.50 BPW) 
llm_load_print_meta: general.name   = models
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token  = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.11 MB
llm_load_tensors: using CUDA for GPU acceleration
llm_load_tensors: mem required  =  132.99 MB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 35/35 layers to GPU
llm_load_tensors: VRAM used: 6695.89 MB
....................................................................................................
llama_new_context_with_model: n_ctx      = 16324
llama_new_context_with_model: freq_base  = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: offloading v cache to GPU
llama_kv_cache_init: offloading k cache to GPU
llama_kv_cache_init: VRAM kv self = 8162.00 MB
llama_new_context_with_model: kv self size  = 8162.00 MB
llama_build_graph: non-view tensors processed: 740/740
llama_new_context_with_model: compute buffer total size = 8615.72 MB
llama_new_context_with_model: VRAM scratch buffer: 8609.09 MB
llama_new_context_with_model: total VRAM used: 23466.99 MB (model: 6695.89 MB, context: 16771.09 MB)

No new questions so proceed with build-in defaults.


main: Simulating parallel requests from clients:
main: n_parallel = 10, n_sequences = 600, cont_batching = 1, system tokens = 305


。。。。。

main: clearing the KV cache

run parameters as at 2023-11-15 10:43:39

main: n_parallel = 10, n_sequences = 600, cont_batching = 1, system tokens = 305
External prompt file: used built-in defaults
Model and path used:  ./CodeLlama-7B/ggml-model-q8_0.gguf

Total prompt tokens:   8752, speed: 36.53 t/s
Total gen tokens:     29266, speed: 122.15 t/s
Total speed (AVG):           speed: 158.68 t/s
Cache misses:             0
Cache KV size 628

llama_print_timings:        load time =   37371.88 ms
llama_print_timings:      sample time =   12907.57 ms / 29866 runs   (    0.43 ms per token,  2313.84 tokens per second)
llama_print_timings: prompt eval time =  214845.96 ms / 38277 tokens (    5.61 ms per token,   178.16 tokens per second)
llama_print_timings:        eval time =     936.39 ms /    46 runs   (   20.36 ms per token,    49.13 tokens per second)
llama_print_timings:       total time =  239590.67 ms

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions