Description
Prerequisites
Please answer the following questions for yourself before submitting an issue.
- I am running the latest code. Development is very rapid so there are no tagged versions as of now.
- I carefully followed the README.md.
- I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
- I reviewed the Discussions, and have a new bug or useful enhancement to share.
Expected Behavior
In ./examples/parallel/parallel.cpp, I added the following two lines to the final output:
int cache_count = llama_get_kv_cache_token_count(ctx);
LOG_TEE("Cache KV size %d", cache_count);
I believe that the logic in line 221 of parallel.cpp:
// all sequences have ended - clear the entire KV cache
for (int i = 0; i < n_clients; ++i) {
llama_kv_cache_seq_rm(ctx, i, n_tokens_system, -1);
}
should release all the occupied cache when the entire task is completed. However, in reality, it does not release the cache.
Current Behavior
I expected the value of cache_count to be 0, but in reality, it is 1153.
Environment and Context
- GPU info
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.85.05 Driver Version: 525.85.05 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Quadro RTX 8000 Off | 00000000:3B:00.0 Off | N/A |
| 33% 29C P8 22W / 260W | 0MiB / 49152MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
- make cmd
LLAMA_CUDA_NVCC=/usr/local/cuda-12/bin/nvcc make LLAMA_CUBLAS=1 -Wdeprecated-declarations
- test cmd
./parallel -m ./CodeLlama-7B/ggml-model-q8_0.gguf -n -1 -c 16324 -b 4096 --cont_batching --parallel 10 --sequences 600 --n-gpu-layers 1000
- model
It appears that you are using the "CodeLlama-7B-HF" model from the repository you mentioned (https://huggingface.co/codellama/CodeLlama-7b-hf). You mentioned that you performed the conversion using the "convert.py" script included in the repository.
$ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 64
On-line CPU(s) list: 0-63
Thread(s) per core: 2
Core(s) per socket: 16
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
Stepping: 7
CPU MHz: 1693.308
CPU max MHz: 3900.0000
CPU min MHz: 1000.0000
BogoMIPS: 4600.00
Virtualization: VT-x
L1d cache: 1 MiB
L1i cache: 1 MiB
L2 cache: 32 MiB
L3 cache: 44 MiB
- Operating System, e.g. for Linux:
$ uname -a
Linux studio-0 4.19.96 #1 SMP Tue Mar 10 10:34:01 CST 2020 x86_64 x86_64 x86_64 GNU/Linux
- SDK version, e.g. for Linux:
$ python3 --version 3.11.5
$ make --version GNU Make 4.2.1
$ g++ --version g++ (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Failure Information (for bugs)
I expected the value of cache_count to be 0, but in reality, it is 1153.
Steps to Reproduce
please download model from https://huggingface.co/codellama/CodeLlama-7b-hf
- python convert.py ./CodeLlama-7B/ --outtype q8_0
- after parallel.cpp's LOG_TEE("Cache misses: %6d\n", n_cache_miss); add
int cache_count = llama_get_kv_cache_token_count(ctx);
LOG_TEE("Cache KV size %d", cache_count);
- ./parallel -m ./CodeLlama-7B/ggml-model-q8_0.gguf -n -1 -c 16324 -b 4096 --cont_batching --parallel 10 --sequences 600 --n-gpu-layers 1000
Failure Logs
Example run with the Linux command perf
ggml_init_cublas: GGML_CUDA_FORCE_MMQ: no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:
Device 0: Quadro RTX 8000, compute capability 7.5
llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from /aistudio/workspace/system-default/models/CodeLlama-7B/ggml-model-q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: - tensor 0: token_embd.weight q8_0 [ 4096, 32016, 1, 1 ]
llama_model_loader: - tensor 1: blk.0.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 2: blk.0.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 3: blk.0.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 4: blk.0.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 5: blk.0.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 6: blk.0.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 7: blk.0.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 8: blk.0.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 9: blk.0.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 10: blk.1.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 11: blk.1.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 12: blk.1.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 13: blk.1.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 14: blk.1.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 15: blk.1.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 16: blk.1.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 17: blk.1.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 18: blk.1.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 19: blk.10.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 20: blk.10.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 21: blk.10.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 22: blk.10.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 23: blk.10.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 24: blk.10.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 25: blk.10.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 26: blk.10.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 27: blk.10.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 28: blk.11.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 29: blk.11.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 30: blk.11.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 31: blk.11.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 32: blk.11.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 33: blk.11.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 34: blk.11.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 35: blk.11.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 36: blk.11.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 37: blk.12.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 38: blk.12.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 39: blk.12.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 40: blk.12.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 41: blk.12.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 42: blk.12.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 43: blk.12.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 44: blk.12.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 45: blk.12.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 46: blk.13.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 47: blk.13.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 48: blk.13.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 49: blk.13.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 50: blk.13.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 51: blk.13.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 52: blk.13.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 53: blk.13.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 54: blk.13.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 55: blk.14.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 56: blk.14.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 57: blk.14.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 58: blk.14.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 59: blk.14.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 60: blk.14.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 61: blk.14.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 62: blk.14.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 63: blk.14.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 64: blk.15.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 65: blk.15.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 66: blk.15.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 67: blk.15.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 68: blk.15.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 69: blk.15.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 70: blk.15.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 71: blk.15.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 72: blk.15.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 73: blk.16.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 74: blk.16.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 75: blk.16.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 76: blk.16.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 77: blk.16.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 78: blk.16.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 79: blk.16.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 80: blk.16.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 81: blk.16.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 82: blk.17.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 83: blk.17.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 84: blk.17.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 85: blk.17.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 86: blk.17.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 87: blk.17.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 88: blk.17.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 89: blk.17.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 90: blk.17.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 91: blk.18.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 92: blk.18.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 93: blk.18.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 94: blk.18.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 95: blk.18.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 96: blk.18.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 97: blk.18.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 98: blk.18.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 99: blk.18.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 100: blk.19.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 101: blk.19.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 102: blk.19.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 103: blk.19.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 104: blk.19.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 105: blk.19.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 106: blk.19.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 107: blk.19.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 108: blk.19.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 109: blk.2.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 110: blk.2.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 111: blk.2.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 112: blk.2.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 113: blk.2.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 114: blk.2.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 115: blk.2.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 116: blk.2.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 117: blk.2.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 118: blk.20.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 119: blk.20.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 120: blk.20.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 121: blk.20.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 122: blk.20.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 123: blk.20.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 124: blk.20.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 125: blk.20.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 126: blk.20.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 127: blk.21.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 128: blk.21.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 129: blk.21.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 130: blk.21.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 131: blk.21.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 132: blk.21.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 133: blk.21.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 134: blk.21.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 135: blk.21.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 136: blk.22.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 137: blk.22.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 138: blk.22.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 139: blk.22.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 140: blk.22.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 141: blk.22.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 142: blk.22.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 143: blk.22.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 144: blk.22.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 145: blk.23.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 146: blk.23.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 147: blk.23.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 148: blk.23.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 149: blk.23.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 150: blk.23.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 151: blk.23.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 152: blk.23.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 153: blk.23.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 154: blk.3.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 155: blk.3.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 156: blk.3.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 157: blk.3.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 158: blk.3.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 159: blk.3.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 160: blk.3.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 161: blk.3.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 162: blk.3.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 163: blk.4.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 164: blk.4.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 165: blk.4.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 166: blk.4.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 167: blk.4.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 168: blk.4.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 169: blk.4.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 170: blk.4.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 171: blk.4.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 172: blk.5.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 173: blk.5.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 174: blk.5.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 175: blk.5.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 176: blk.5.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 177: blk.5.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 178: blk.5.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 179: blk.5.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 180: blk.5.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 181: blk.6.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 182: blk.6.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 183: blk.6.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 184: blk.6.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 185: blk.6.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 186: blk.6.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 187: blk.6.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 188: blk.6.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 189: blk.6.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 190: blk.7.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 191: blk.7.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 192: blk.7.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 193: blk.7.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 194: blk.7.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 195: blk.7.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 196: blk.7.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 197: blk.7.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 198: blk.7.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 199: blk.8.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 200: blk.8.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 201: blk.8.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 202: blk.8.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 203: blk.8.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 204: blk.8.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 205: blk.8.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 206: blk.8.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 207: blk.8.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 208: blk.9.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 209: blk.9.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 210: blk.9.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 211: blk.9.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 212: blk.9.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 213: blk.9.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 214: blk.9.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 215: blk.9.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 216: blk.9.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 217: output.weight q8_0 [ 4096, 32016, 1, 1 ]
llama_model_loader: - tensor 218: blk.24.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 219: blk.24.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 220: blk.24.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 221: blk.24.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 222: blk.24.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 223: blk.24.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 224: blk.24.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 225: blk.24.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 226: blk.24.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 227: blk.25.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 228: blk.25.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 229: blk.25.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 230: blk.25.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 231: blk.25.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 232: blk.25.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 233: blk.25.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 234: blk.25.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 235: blk.25.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 236: blk.26.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 237: blk.26.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 238: blk.26.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 239: blk.26.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 240: blk.26.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 241: blk.26.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 242: blk.26.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 243: blk.26.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 244: blk.26.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 245: blk.27.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 246: blk.27.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 247: blk.27.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 248: blk.27.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 249: blk.27.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 250: blk.27.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 251: blk.27.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 252: blk.27.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 253: blk.27.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 254: blk.28.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 255: blk.28.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 256: blk.28.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 257: blk.28.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 258: blk.28.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 259: blk.28.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 260: blk.28.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 261: blk.28.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 262: blk.28.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 263: blk.29.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 264: blk.29.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 265: blk.29.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 266: blk.29.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 267: blk.29.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 268: blk.29.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 269: blk.29.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 270: blk.29.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 271: blk.29.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 272: blk.30.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 273: blk.30.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 274: blk.30.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 275: blk.30.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 276: blk.30.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 277: blk.30.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 278: blk.30.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 279: blk.30.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 280: blk.30.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 281: blk.31.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 282: blk.31.ffn_down.weight q8_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 283: blk.31.ffn_gate.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 284: blk.31.ffn_up.weight q8_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 285: blk.31.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 286: blk.31.attn_k.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 287: blk.31.attn_output.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 288: blk.31.attn_q.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 289: blk.31.attn_v.weight q8_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 290: output_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - kv 0: general.architecture str
llama_model_loader: - kv 1: general.name str
llama_model_loader: - kv 2: llama.context_length u32
llama_model_loader: - kv 3: llama.embedding_length u32
llama_model_loader: - kv 4: llama.block_count u32
llama_model_loader: - kv 5: llama.feed_forward_length u32
llama_model_loader: - kv 6: llama.rope.dimension_count u32
llama_model_loader: - kv 7: llama.attention.head_count u32
llama_model_loader: - kv 8: llama.attention.head_count_kv u32
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32
llama_model_loader: - kv 10: llama.rope.freq_base f32
llama_model_loader: - kv 11: general.file_type u32
llama_model_loader: - kv 12: tokenizer.ggml.model str
llama_model_loader: - kv 13: tokenizer.ggml.tokens arr
llama_model_loader: - kv 14: tokenizer.ggml.scores arr
llama_model_loader: - kv 15: tokenizer.ggml.token_type arr
llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32
llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32
llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type q8_0: 226 tensors
llm_load_vocab: mismatch in special tokens definition ( 264/32016 vs 259/32016 ).
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32016
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 16384
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff = 11008
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 16384
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: model type = 7B
llm_load_print_meta: model ftype = mostly Q8_0
llm_load_print_meta: model params = 6.74 B
llm_load_print_meta: model size = 6.67 GiB (8.50 BPW)
llm_load_print_meta: general.name = models
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.11 MB
llm_load_tensors: using CUDA for GPU acceleration
llm_load_tensors: mem required = 132.99 MB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 35/35 layers to GPU
llm_load_tensors: VRAM used: 6695.89 MB
....................................................................................................
llama_new_context_with_model: n_ctx = 16324
llama_new_context_with_model: freq_base = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: offloading v cache to GPU
llama_kv_cache_init: offloading k cache to GPU
llama_kv_cache_init: VRAM kv self = 8162.00 MB
llama_new_context_with_model: kv self size = 8162.00 MB
llama_build_graph: non-view tensors processed: 740/740
llama_new_context_with_model: compute buffer total size = 8615.72 MB
llama_new_context_with_model: VRAM scratch buffer: 8609.09 MB
llama_new_context_with_model: total VRAM used: 23466.99 MB (model: 6695.89 MB, context: 16771.09 MB)
No new questions so proceed with build-in defaults.
main: Simulating parallel requests from clients:
main: n_parallel = 10, n_sequences = 600, cont_batching = 1, system tokens = 305
。。。。。
main: clearing the KV cache
run parameters as at 2023-11-15 10:43:39
main: n_parallel = 10, n_sequences = 600, cont_batching = 1, system tokens = 305
External prompt file: used built-in defaults
Model and path used: ./CodeLlama-7B/ggml-model-q8_0.gguf
Total prompt tokens: 8752, speed: 36.53 t/s
Total gen tokens: 29266, speed: 122.15 t/s
Total speed (AVG): speed: 158.68 t/s
Cache misses: 0
Cache KV size 628
llama_print_timings: load time = 37371.88 ms
llama_print_timings: sample time = 12907.57 ms / 29866 runs ( 0.43 ms per token, 2313.84 tokens per second)
llama_print_timings: prompt eval time = 214845.96 ms / 38277 tokens ( 5.61 ms per token, 178.16 tokens per second)
llama_print_timings: eval time = 936.39 ms / 46 runs ( 20.36 ms per token, 49.13 tokens per second)
llama_print_timings: total time = 239590.67 ms