Skip to content

Separate Sigma Schedule #10146

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 21 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/community/adaptive_mask_inpainting.py
Original file line number Diff line number Diff line change
Expand Up @@ -1148,7 +1148,7 @@ def __call__(
# run segmentation
if use_adaptive_mask:
if enforce_full_mask_ratio > 0.0:
use_default_mask = t < self.scheduler.config.num_train_timesteps * enforce_full_mask_ratio
use_default_mask = t < self.scheduler._schedule.num_train_timesteps * enforce_full_mask_ratio
elif enforce_full_mask_ratio == 0.0:
use_default_mask = False
else:
Expand Down
4 changes: 2 additions & 2 deletions examples/community/edict_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ def noise_step(
model_output: torch.Tensor,
timestep: torch.Tensor,
):
prev_timestep = timestep - self.scheduler.config.num_train_timesteps / self.scheduler.num_inference_steps
prev_timestep = timestep - self.scheduler._schedule.num_train_timesteps / self.scheduler.num_inference_steps

alpha_prod_t, beta_prod_t = self._get_alpha_and_beta(timestep)
alpha_prod_t_prev, beta_prod_t_prev = self._get_alpha_and_beta(prev_timestep)
Expand All @@ -116,7 +116,7 @@ def denoise_step(
model_output: torch.Tensor,
timestep: torch.Tensor,
):
prev_timestep = timestep - self.scheduler.config.num_train_timesteps / self.scheduler.num_inference_steps
prev_timestep = timestep - self.scheduler._schedule.num_train_timesteps / self.scheduler.num_inference_steps

alpha_prod_t, beta_prod_t = self._get_alpha_and_beta(timestep)
alpha_prod_t_prev, beta_prod_t_prev = self._get_alpha_and_beta(prev_timestep)
Expand Down
8 changes: 4 additions & 4 deletions examples/community/lpw_stable_diffusion_xl.py
Original file line number Diff line number Diff line change
Expand Up @@ -1050,8 +1050,8 @@ def get_timesteps(self, num_inference_steps, strength, device, denoising_start=N
if denoising_start is not None:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_start * self.scheduler.config.num_train_timesteps)
self.scheduler._schedule.num_train_timesteps
- (denoising_start * self.scheduler._schedule.num_train_timesteps)
)
)

Expand Down Expand Up @@ -1819,8 +1819,8 @@ def denoising_value_valid(dnv):
elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
self.scheduler._schedule.num_train_timesteps
- (self.denoising_end * self.scheduler._schedule.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
Expand Down
4 changes: 2 additions & 2 deletions examples/community/masked_stable_diffusion_xl_img2img.py
Original file line number Diff line number Diff line change
Expand Up @@ -376,8 +376,8 @@ def denoising_value_valid(dnv):
elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
self.scheduler._schedule.num_train_timesteps
- (self.denoising_end * self.scheduler._schedule.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
Expand Down
8 changes: 4 additions & 4 deletions examples/community/pipeline_demofusion_sdxl.py
Original file line number Diff line number Diff line change
Expand Up @@ -933,8 +933,8 @@ def __call__(
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_end * self.scheduler.config.num_train_timesteps)
self.scheduler._schedule.num_train_timesteps
- (denoising_end * self.scheduler._schedule.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
Expand Down Expand Up @@ -1040,8 +1040,8 @@ def __call__(
1
+ torch.cos(
torch.pi
* (self.scheduler.config.num_train_timesteps - t)
/ self.scheduler.config.num_train_timesteps
* (self.scheduler._schedule.num_train_timesteps - t)
/ self.scheduler._schedule.num_train_timesteps
)
).cpu()
)
Expand Down
14 changes: 7 additions & 7 deletions examples/community/pipeline_flux_differential_img2img.py
Original file line number Diff line number Diff line change
Expand Up @@ -582,7 +582,7 @@ def prepare_latents(

if latents is None:
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = self.scheduler.scale_noise(image_latents, timestep, noise)
latents = self.scheduler.add_noise(image_latents, noise, timestep)
else:
noise = latents.to(device)
latents = noise
Expand Down Expand Up @@ -876,10 +876,10 @@ def __call__(
image_seq_len = (int(height) // self.vae_scale_factor) * (int(width) // self.vae_scale_factor)
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
self.scheduler._schedule.base_image_seq_len,
self.scheduler._schedule.max_image_seq_len,
self.scheduler._schedule.base_shift,
self.scheduler._schedule.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
Expand Down Expand Up @@ -976,8 +976,8 @@ def __call__(

if i < len(timesteps) - 1:
noise_timestep = timesteps[i + 1]
image_latent = self.scheduler.scale_noise(
original_image_latents, torch.tensor([noise_timestep]), noise
image_latent = self.scheduler.add_noise(
original_image_latents, noise, torch.tensor([noise_timestep])
)

# start diff diff
Expand Down
16 changes: 8 additions & 8 deletions examples/community/pipeline_flux_rf_inversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -822,10 +822,10 @@ def __call__(
image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
self.scheduler._schedule.base_image_seq_len,
self.scheduler._schedule.max_image_seq_len,
self.scheduler._schedule.base_shift,
self.scheduler._schedule.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
Expand Down Expand Up @@ -992,10 +992,10 @@ def invert(
image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
self.scheduler._schedule.base_image_seq_len,
self.scheduler._schedule.max_image_seq_len,
self.scheduler._schedule.base_shift,
self.scheduler._schedule.max_shift,
)
timesteps, num_inversion_steps = retrieve_timesteps(
self.scheduler,
Expand Down
8 changes: 4 additions & 4 deletions examples/community/pipeline_flux_with_cfg.py
Original file line number Diff line number Diff line change
Expand Up @@ -757,10 +757,10 @@ def __call__(
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
self.scheduler._schedule.base_image_seq_len,
self.scheduler._schedule.max_image_seq_len,
self.scheduler._schedule.base_shift,
self.scheduler._schedule.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
Expand Down
8 changes: 4 additions & 4 deletions examples/community/pipeline_kolors_differential_img2img.py
Original file line number Diff line number Diff line change
Expand Up @@ -580,8 +580,8 @@ def get_timesteps(self, num_inference_steps, strength, device, denoising_start=N
if denoising_start is not None:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_start * self.scheduler.config.num_train_timesteps)
self.scheduler._schedule.num_train_timesteps
- (denoising_start * self.scheduler._schedule.num_train_timesteps)
)
)

Expand Down Expand Up @@ -1159,8 +1159,8 @@ def denoising_value_valid(dnv):
elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
self.scheduler._schedule.num_train_timesteps
- (self.denoising_end * self.scheduler._schedule.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
Expand Down
4 changes: 2 additions & 2 deletions examples/community/pipeline_null_text_inversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ def latent2image(self, latents):
return image

def prev_step(self, model_output, timestep, sample):
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
prev_timestep = timestep - self.scheduler._schedule.num_train_timesteps // self.scheduler.num_inference_steps
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
Expand All @@ -100,7 +100,7 @@ def prev_step(self, model_output, timestep, sample):

def next_step(self, model_output, timestep, sample):
timestep, next_timestep = (
min(timestep - self.scheduler.config.num_train_timesteps // self.num_inference_steps, 999),
min(timestep - self.scheduler._schedule.num_train_timesteps // self.num_inference_steps, 999),
timestep,
)
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
Expand Down
8 changes: 4 additions & 4 deletions examples/community/pipeline_sdxl_style_aligned.py
Original file line number Diff line number Diff line change
Expand Up @@ -874,8 +874,8 @@ def get_timesteps(self, num_inference_steps, strength, device, denoising_start=N
if denoising_start is not None:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_start * self.scheduler.config.num_train_timesteps)
self.scheduler._schedule.num_train_timesteps
- (denoising_start * self.scheduler._schedule.num_train_timesteps)
)
)

Expand Down Expand Up @@ -1785,8 +1785,8 @@ def denoising_value_valid(dnv):
):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
self.scheduler._schedule.num_train_timesteps
- (self.denoising_end * self.scheduler._schedule.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -640,7 +640,7 @@ def prepare_latents(
shape = init_latents.shape
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)

init_latents = self.scheduler.scale_noise(init_latents, timestep, noise)
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents.to(device=device, dtype=dtype)

return latents
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1279,8 +1279,8 @@ def __call__(
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_end * self.scheduler.config.num_train_timesteps)
self.scheduler._schedule.num_train_timesteps
- (denoising_end * self.scheduler._schedule.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1057,8 +1057,8 @@ def get_timesteps(self, num_inference_steps, strength, device, denoising_start=N
if denoising_start is not None:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_start * self.scheduler.config.num_train_timesteps)
self.scheduler._schedule.num_train_timesteps
- (denoising_start * self.scheduler._schedule.num_train_timesteps)
)
)

Expand Down Expand Up @@ -1691,8 +1691,8 @@ def denoising_value_valid(dnv):
elif denoising_end is not None and denoising_value_valid(denoising_end):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_end * self.scheduler.config.num_train_timesteps)
self.scheduler._schedule.num_train_timesteps
- (denoising_end * self.scheduler._schedule.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -626,8 +626,8 @@ def get_timesteps(self, num_inference_steps, strength, device, denoising_start=N
if denoising_start is not None:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_start * self.scheduler.config.num_train_timesteps)
self.scheduler._schedule.num_train_timesteps
- (denoising_start * self.scheduler._schedule.num_train_timesteps)
)
)

Expand Down Expand Up @@ -1306,8 +1306,8 @@ def denoising_value_valid(dnv):
elif denoising_end is not None and denoising_value_valid(denoising_end):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_end * self.scheduler.config.num_train_timesteps)
self.scheduler._schedule.num_train_timesteps
- (denoising_end * self.scheduler._schedule.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
Expand Down
4 changes: 2 additions & 2 deletions examples/community/pipeline_stable_diffusion_xl_ipex.py
Original file line number Diff line number Diff line change
Expand Up @@ -1055,8 +1055,8 @@ def __call__(
):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
self.scheduler._schedule.num_train_timesteps
- (self.denoising_end * self.scheduler._schedule.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
Expand Down
2 changes: 1 addition & 1 deletion examples/community/rerender_a_video.py
Original file line number Diff line number Diff line change
Expand Up @@ -1079,7 +1079,7 @@ def denoising_loop(latents, mask=None, xtrg=None, noise_rescale=None):
# get x_t from x_0
latents = self.scheduler.add_noise(pred_x0, noise_pred, t).to(latents_dtype)

prev_t = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
prev_t = t - self.scheduler._schedule.num_train_timesteps // self.scheduler.num_inference_steps
if i == len(timesteps) - 1:
alpha_t_prev = 1.0
else:
Expand Down
2 changes: 1 addition & 1 deletion examples/community/sde_drag.py
Original file line number Diff line number Diff line change
Expand Up @@ -295,7 +295,7 @@ def train_lora(self, prompt, image, lora_step=100, lora_rank=16, generator=None)

# Sample a random timestep for each image
timesteps = torch.randint(
0, self.scheduler.config.num_train_timesteps, (bsz,), device=model_input.device, generator=generator
0, self.scheduler._schedule.num_train_timesteps, (bsz,), device=model_input.device, generator=generator
)
timesteps = timesteps.long()

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1177,8 +1177,8 @@ def hacked_UpBlock2D_forward(
):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
self.scheduler._schedule.num_train_timesteps
- (self.denoising_end * self.scheduler._schedule.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
Expand Down
4 changes: 2 additions & 2 deletions examples/community/stable_diffusion_xl_reference.py
Original file line number Diff line number Diff line change
Expand Up @@ -1035,8 +1035,8 @@ def hacked_UpBlock2D_forward(
):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
self.scheduler._schedule.num_train_timesteps
- (self.denoising_end * self.scheduler._schedule.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
Expand Down
Loading