Skip to content

Modular APG #10173

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 10, 2024
Merged

Modular APG #10173

merged 1 commit into from
Dec 10, 2024

Conversation

hlky
Copy link
Contributor

@hlky hlky commented Dec 10, 2024

What does this PR do?

Adds Adaptive Projected Guidance (#9626) to Modular Diffusers with APGGuider. Notable differences to existing Guider classes are:

  • we pass latents to apply_guidance so we can convert the model output to the denoised prediction (x0), APG works best on that, see Adaptive Projected Guidance #9626 (comment) from the author
  • in APGGuider's set_guider we take scheduler from pipeline, this is needed for the above conversion. set_guider runs with every DenoiseStep block so scheduler will always be updated.
Code
import torch
from diffusers import StableDiffusionXLModularPipeline
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_modular import (
  StableDiffusionXLTextEncoderStep,
  StableDiffusionXLDecodeLatentsStep,
  StableDiffusionXLInputStep,
  StableDiffusionXLAutoSetTimestepsStep,
  StableDiffusionXLAutoPrepareLatentsStep,
  StableDiffusionXLAutoPrepareAdditionalConditioningStep,
  StableDiffusionXLAutoDenoiseStep,
)
from diffusers.pipelines.modular_pipeline_builder import SequentialPipelineBlocks
from diffusers.guider import APGGuider

prompt = "A 4k dslr photo of a raccoon wearing an astronaut helmet, photorealistic."


class StableDiffusionXLMainSteps(SequentialPipelineBlocks):
  block_classes = [
      StableDiffusionXLInputStep,
      StableDiffusionXLAutoSetTimestepsStep,
      StableDiffusionXLAutoPrepareLatentsStep,
      StableDiffusionXLAutoPrepareAdditionalConditioningStep,
      StableDiffusionXLAutoDenoiseStep,
  ]
  block_prefixes = [
      "input",
      "set_timesteps",
      "prepare_latents",
      "prepare_add_cond",
      "denoise",
  ]


text_encoder_workflow = StableDiffusionXLTextEncoderStep()
decoder_workflow = StableDiffusionXLDecodeLatentsStep()
sdxl_workflow = StableDiffusionXLMainSteps()
apg_guider = APGGuider()

repo = "stabilityai/stable-diffusion-xl-base-1.0"

text_encoder_workflow.add_states_from_pretrained(repo, torch_dtype=torch.float32)
decoder_workflow.add_states_from_pretrained(repo, torch_dtype=torch.float32)
sdxl_workflow.add_states_from_pretrained(repo, torch_dtype=torch.float32)

sdxl_workflow.update_states(guider=apg_guider)


print(f" text encoder workflow: {text_encoder_workflow}")
print(f" decoder workflow: {decoder_workflow}")
print(f" main sdxl workflow: {sdxl_workflow}")
print(f" prepare_latents: {sdxl_workflow.blocks['prepare_latents_step']}")

text_node = StableDiffusionXLModularPipeline()
text_node.add_blocks(text_encoder_workflow)

sdxl_node = StableDiffusionXLModularPipeline()
sdxl_node.add_blocks(sdxl_workflow)

decoder_node = StableDiffusionXLModularPipeline()
decoder_node.add_blocks(decoder_workflow)

text_state = text_node.run_blocks(prompt=prompt)

print(f" text state: {text_state}")

generator = torch.Generator().manual_seed(0)
latents_state = sdxl_node.run_blocks(
  **text_state.intermediates,
  generator=generator,
  num_inference_steps=20,
  guidance_scale=15,
  height=896,
  width=768,
  guider_kwargs={
      "adaptive_projected_guidance_momentum": -0.5,
      "adaptive_projected_guidance_rescale_factor": 15.0,
  },
)
latents = latents_state.get_intermediate("latents")

image_state = decoder_node.run_blocks(latents=latents)
image_state.get_output("images").images[0].save("apg.png")
CFG

cfg

APG

apg

Note that the benefit of APG is more noticeable with higher guidance_scale values, we use 15 in this example.

Who can review?

Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
members/contributors who may be interested in your PR.

cc @yiyixuxu

@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

@yiyixuxu yiyixuxu merged commit a8df0f1 into huggingface:modular-diffusers Dec 10, 2024
1 check passed
@yiyixuxu
Copy link
Collaborator

oh super cool - thank you!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants