Skip to content

[LoRA] Enabling limited LoRA support for text encoder #2918

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 18 commits into from
Apr 12, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions docs/source/en/api/loaders.mdx
Original file line number Diff line number Diff line change
Expand Up @@ -28,3 +28,11 @@ API to load such adapter neural networks via the [`loaders.py` module](https://g
### UNet2DConditionLoadersMixin

[[autodoc]] loaders.UNet2DConditionLoadersMixin

### TextualInversionLoaderMixin

[[autodoc]] loaders.TextualInversionLoaderMixin

### LoraLoaderMixin

[[autodoc]] loaders.LoraLoaderMixin
466 changes: 457 additions & 9 deletions src/diffusers/loaders.py

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer

from ...configuration_utils import FrozenDict
from ...loaders import TextualInversionLoaderMixin
from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, UNet2DConditionModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
Expand Down Expand Up @@ -53,7 +53,7 @@
"""


class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin):
class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
r"""
Pipeline for text-to-image generation using Stable Diffusion.

Expand Down
1 change: 1 addition & 0 deletions src/diffusers/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@
ONNX_EXTERNAL_WEIGHTS_NAME,
ONNX_WEIGHTS_NAME,
SAFETENSORS_WEIGHTS_NAME,
TEXT_ENCODER_TARGET_MODULES,
WEIGHTS_NAME,
)
from .deprecation_utils import deprecate
Expand Down
1 change: 1 addition & 0 deletions src/diffusers/utils/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,3 +30,4 @@
DIFFUSERS_DYNAMIC_MODULE_NAME = "diffusers_modules"
HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules"))
DEPRECATED_REVISION_ARGS = ["fp16", "non-ema"]
TEXT_ENCODER_TARGET_MODULES = ["q_proj", "v_proj", "k_proj", "out_proj"]
213 changes: 213 additions & 0 deletions tests/test_lora_layers.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,213 @@
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest

import torch
import torch.nn as nn
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import AutoencoderKL, DDIMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin
from diffusers.models.attention_processor import LoRAAttnProcessor
from diffusers.utils import TEXT_ENCODER_TARGET_MODULES, floats_tensor, torch_device


def create_unet_lora_layers(unet: nn.Module):
lora_attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
unet_lora_layers = AttnProcsLayers(lora_attn_procs)
return lora_attn_procs, unet_lora_layers


def create_text_encoder_lora_layers(text_encoder: nn.Module):
text_lora_attn_procs = {}
for name, module in text_encoder.named_modules():
if any([x in name for x in TEXT_ENCODER_TARGET_MODULES]):
text_lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=module.out_features, cross_attention_dim=None)
text_encoder_lora_layers = AttnProcsLayers(text_lora_attn_procs)
return text_encoder_lora_layers


class LoraLoaderMixinTests(unittest.TestCase):
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)
text_encoder_lora_layers = create_text_encoder_lora_layers(text_encoder)

pipeline_components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
lora_components = {
"unet_lora_layers": unet_lora_layers,
"text_encoder_lora_layers": text_encoder_lora_layers,
"unet_lora_attn_procs": unet_lora_attn_procs,
}
return pipeline_components, lora_components

def get_dummy_inputs(self):
batch_size = 1
sequence_length = 10
num_channels = 4
sizes = (32, 32)

generator = torch.manual_seed(0)
noise = floats_tensor((batch_size, num_channels) + sizes)
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

pipeline_inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}

return noise, input_ids, pipeline_inputs

def test_lora_save_load(self):
pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)

noise, input_ids, pipeline_inputs = self.get_dummy_inputs()

original_images = sd_pipe(**pipeline_inputs).images
orig_image_slice = original_images[0, -3:, -3:, -1]

with tempfile.TemporaryDirectory() as tmpdirname:
LoraLoaderMixin.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
sd_pipe.load_lora_weights(tmpdirname)

lora_images = sd_pipe(**pipeline_inputs).images
lora_image_slice = lora_images[0, -3:, -3:, -1]

# Outputs shouldn't match.
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))

def test_lora_save_load_safetensors(self):
pipeline_components, lora_components = self.get_dummy_components()
sd_pipe = StableDiffusionPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)

noise, input_ids, pipeline_inputs = self.get_dummy_inputs()

original_images = sd_pipe(**pipeline_inputs).images
orig_image_slice = original_images[0, -3:, -3:, -1]

with tempfile.TemporaryDirectory() as tmpdirname:
LoraLoaderMixin.save_lora_weights(
save_directory=tmpdirname,
unet_lora_layers=lora_components["unet_lora_layers"],
text_encoder_lora_layers=lora_components["text_encoder_lora_layers"],
safe_serialization=True,
)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
sd_pipe.load_lora_weights(tmpdirname)

lora_images = sd_pipe(**pipeline_inputs).images
lora_image_slice = lora_images[0, -3:, -3:, -1]

# Outputs shouldn't match.
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))

def test_lora_save_load_legacy(self):
pipeline_components, lora_components = self.get_dummy_components()
unet_lora_attn_procs = lora_components["unet_lora_attn_procs"]
sd_pipe = StableDiffusionPipeline(**pipeline_components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)

noise, input_ids, pipeline_inputs = self.get_dummy_inputs()

original_images = sd_pipe(**pipeline_inputs).images
orig_image_slice = original_images[0, -3:, -3:, -1]

with tempfile.TemporaryDirectory() as tmpdirname:
unet = sd_pipe.unet
unet.set_attn_processor(unet_lora_attn_procs)
unet.save_attn_procs(tmpdirname)
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
sd_pipe.load_lora_weights(tmpdirname)

lora_images = sd_pipe(**pipeline_inputs).images
lora_image_slice = lora_images[0, -3:, -3:, -1]

# Outputs shouldn't match.
self.assertFalse(torch.allclose(torch.from_numpy(orig_image_slice), torch.from_numpy(lora_image_slice)))