Skip to content

[LoRA] Handle DoRA better #9547

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 14 commits into from
Oct 8, 2024
39 changes: 33 additions & 6 deletions src/diffusers/loaders/lora_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,7 @@ def load_lora_weights(
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)

is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys())
is_correct_format = all("lora" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")

Expand Down Expand Up @@ -211,6 +211,11 @@ def lora_state_dict(
user_agent=user_agent,
allow_pickle=allow_pickle,
)
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

network_alphas = None
# TODO: replace it with a method from `state_dict_utils`
Expand Down Expand Up @@ -562,7 +567,8 @@ def load_lora_weights(
unet_config=self.unet.config,
**kwargs,
)
is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys())

is_correct_format = all("lora" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")

Expand Down Expand Up @@ -684,6 +690,11 @@ def lora_state_dict(
user_agent=user_agent,
allow_pickle=allow_pickle,
)
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

network_alphas = None
# TODO: replace it with a method from `state_dict_utils`
Expand Down Expand Up @@ -1089,6 +1100,12 @@ def lora_state_dict(
allow_pickle=allow_pickle,
)

is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

return state_dict

def load_lora_weights(
Expand Down Expand Up @@ -1125,7 +1142,7 @@ def load_lora_weights(
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)

is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys())
is_correct_format = all("lora" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")

Expand Down Expand Up @@ -1587,9 +1604,13 @@ def lora_state_dict(
user_agent=user_agent,
allow_pickle=allow_pickle,
)
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

# TODO (sayakpaul): to a follow-up to clean and try to unify the conditions.

is_kohya = any(".lora_down.weight" in k for k in state_dict)
if is_kohya:
state_dict = _convert_kohya_flux_lora_to_diffusers(state_dict)
Expand Down Expand Up @@ -1659,7 +1680,7 @@ def load_lora_weights(
pretrained_model_name_or_path_or_dict, return_alphas=True, **kwargs
)

is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys())
is_correct_format = all("lora" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")

Expand Down Expand Up @@ -2374,6 +2395,12 @@ def lora_state_dict(
allow_pickle=allow_pickle,
)

is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}

return state_dict

def load_lora_weights(
Expand Down Expand Up @@ -2405,7 +2432,7 @@ def load_lora_weights(
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)

is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys())
is_correct_format = all("lora" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")

Expand Down
20 changes: 13 additions & 7 deletions tests/lora/test_lora_layers_sdxl.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,8 +33,10 @@
StableDiffusionXLPipeline,
T2IAdapter,
)
from diffusers.utils import logging
from diffusers.utils.import_utils import is_accelerate_available
from diffusers.utils.testing_utils import (
CaptureLogger,
load_image,
nightly,
numpy_cosine_similarity_distance,
Expand Down Expand Up @@ -620,14 +622,18 @@ def test_integration_logits_for_dora_lora(self):
pipeline.load_lora_weights("hf-internal-testing/dora-trained-on-kohya")
pipeline.enable_model_cpu_offload()

images = pipeline(
"photo of ohwx dog",
num_inference_steps=10,
generator=torch.manual_seed(0),
output_type="np",
).images
logger = logging.get_logger("diffusers.loaders.lora_pipeline")
logger.setLevel(30)
with CaptureLogger(logger) as cap_logger:
images = pipeline(
"photo of ohwx dog",
num_inference_steps=10,
generator=torch.manual_seed(0),
output_type="np",
).images
assert "It seems like you are using a DoRA checkpoint" in cap_logger.out

predicted_slice = images[0, -3:, -3:, -1].flatten()
expected_slice_scale = np.array([0.3932, 0.3742, 0.4429, 0.3737, 0.3504, 0.433, 0.3948, 0.3769, 0.4516])
expected_slice_scale = np.array([0.1817, 0.0697, 0.2346, 0.0900, 0.1261, 0.2279, 0.1767, 0.1991, 0.2886])
max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
assert max_diff < 1e-3
Loading