@@ -595,59 +595,3 @@ module attributes {transform.with_named_sequence} {
595
595
transform.yield
596
596
}
597
597
}
598
-
599
-
600
- // -----
601
-
602
- func.func @vectorize_scalar_broadcast_column_tensor (%in: tensor <1 x1 x4 xi32 >) -> tensor <1 x1 x4 xi32 > {
603
- %c4 = arith.constant 4 : index
604
- %c0 = arith.constant 0 : index
605
- %cst = arith.constant dense <[[0 ], [1 ], [2 ], [3 ], [4 ], [5 ], [6 ], [7 ], [8 ], [9 ], [10 ], [11 ], [12 ], [13 ], [14 ]]> : tensor <15 x1 xi32 >
606
-
607
- %out = linalg.generic {index ing_maps = [affine_map <(d0 , d1 , d2 ) -> (d0 , d1 , d2 )>], iterator_types = [" parallel" , " parallel" , " parallel" ]} outs (%in : tensor <1 x1 x4 xi32 >) {
608
- ^bb0 (%out: i32 ):
609
- %8 = linalg.index 0 : index
610
- %idx_0 = linalg.index 0 : index
611
- %extracted = tensor.extract %cst [%idx_0 , %c0 ] : tensor <15 x1 xi32 >
612
- linalg.yield %extracted : i32
613
- } -> tensor <1 x1 x4 xi32 >
614
-
615
- return %out:tensor <1 x1 x4 xi32 >
616
- }
617
-
618
- // CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1) -> (0, 0, 0)>
619
- // CHECK-LABEL: func.func @vectorize_scalar_broadcast_column_tensor(
620
- // CHECK-SAME: %[[VAL_0:.*]]: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> {
621
- // CHECK: %[[VAL_1:.*]] = arith.constant 4 : index
622
- // CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
623
- // CHECK: %[[VAL_3:.*]] = arith.constant dense<{{\[\[}}0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]]> : tensor<15x1xi32>
624
- // CHECK: %[[VAL_4:.*]] = arith.constant 1 : index
625
- // CHECK: %[[VAL_5:.*]] = arith.constant 1 : index
626
- // CHECK: %[[VAL_6:.*]] = arith.constant 4 : index
627
- // CHECK: %[[VAL_7:.*]] = arith.constant 0 : index
628
- // CHECK: %[[VAL_8:.*]] = arith.constant 0 : i32
629
- // CHECK: %[[VAL_9:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_7]], %[[VAL_7]], %[[VAL_7]]], %[[VAL_8]] : tensor<1x1x4xi32>, vector<1x1x4xi32>
630
- // CHECK: %[[VAL_10:.*]] = vector.step : vector<1xindex>
631
- // CHECK: %[[VAL_11:.*]] = vector.broadcast %[[VAL_10]] : vector<1xindex> to vector<4x1x1xindex>
632
- // CHECK: %[[VAL_12:.*]] = vector.transpose %[[VAL_11]], [2, 1, 0] : vector<4x1x1xindex> to vector<1x1x4xindex>
633
- // CHECK: %[[VAL_13:.*]] = vector.step : vector<1xindex>
634
- // CHECK: %[[VAL_14:.*]] = vector.broadcast %[[VAL_13]] : vector<1xindex> to vector<4x1x1xindex>
635
- // CHECK: %[[VAL_15:.*]] = vector.transpose %[[VAL_14]], [2, 1, 0] : vector<4x1x1xindex> to vector<1x1x4xindex>
636
- // CHECK: %[[VAL_16:.*]] = arith.constant dense<true> : vector<1x1x4xi1>
637
- // CHECK: %[[VAL_17:.*]] = arith.constant dense<0> : vector<1x1x4xi32>
638
- // CHECK: %[[VAL_18:.*]] = arith.constant 0 : index
639
- // CHECK: %[[VAL_19:.*]] = arith.constant 0 : i32
640
- // CHECK: %[[VAL_20:.*]] = vector.shape_cast %[[VAL_15]] : vector<1x1x4xindex> to vector<4xindex>
641
- // CHECK: %[[VAL_21:.*]] = vector.extractelement %[[VAL_20]]{{\[}}%[[VAL_19]] : i32] : vector<4xindex>
642
- // CHECK: %[[VAL_22:.*]] = arith.constant 0 : i32
643
- // CHECK: %[[VAL_23:.*]] = vector.transfer_read %[[VAL_3]]{{\[}}%[[VAL_21]], %[[VAL_2]]], %[[VAL_22]] {in_bounds = [true, true, true], permutation_map = #[[$ATTR_1]]} : tensor<15x1xi32>, vector<1x1x4xi32>
644
- // CHECK: %[[VAL_24:.*]] = arith.constant 0 : index
645
- // CHECK: %[[VAL_25:.*]] = vector.transfer_write %[[VAL_23]], %[[VAL_0]]{{\[}}%[[VAL_24]], %[[VAL_24]], %[[VAL_24]]] : vector<1x1x4xi32>, tensor<1x1x4xi32>
646
-
647
- module attributes {transform.with_named_sequence } {
648
- transform.named_sequence @__transform_main (%arg1: !transform.any_op {transform.readonly }) {
649
- %0 = transform.structured.match ops {[" linalg.generic" ]} in %arg1 : (!transform.any_op ) -> !transform.any_op
650
- transform.structured.vectorize %0 vector_sizes [1 , 1 , 4 ]{ vectorize_nd_extract } : !transform.any_op
651
- transform.yield
652
- }
653
- }
0 commit comments