Skip to content

Revert "[mlir][linalg] Relax tensor.extract vectorization" #102232

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 6, 2024

Conversation

hanhanW
Copy link
Contributor

@hanhanW hanhanW commented Aug 6, 2024

Reverts #99299 because it breaks the lowering. To repro: mlir-opt -transform-interpreter ~/repro.mlir

#map = affine_map<(d0, d1) -> (d0)>
#map1 = affine_map<(d0, d1) -> (d1)>
#map2 = affine_map<(d0, d1) -> (d0, d1)>
#map3 = affine_map<(d0, d1) -> (d0 + d1)>
module {
  func.func @foo(%arg0: index, %arg1: tensor<2xf32>, %arg2: tensor<4xf32>, %arg3: tensor<1xf32>) -> tensor<4x1xf32> {
    %c0 = arith.constant 0 : index
    %cst = arith.constant 1.000000e+00 : f32
    %cst_0 = arith.constant 0.000000e+00 : f32
    %0 = tensor.empty() : tensor<4x1xf32>
    %1 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel"]} ins(%arg2, %arg3 : tensor<4xf32>, tensor<1xf32>) outs(%0 : tensor<4x1xf32>) {
    ^bb0(%in: f32, %in_1: f32, %out: f32):
      %2 = linalg.index 0 : index
      %3 = linalg.index 1 : index
      %4 = affine.apply #map3(%3, %arg0)
      %extracted = tensor.extract %arg1[%c0] : tensor<2xf32>
      %5 = arith.cmpi eq, %2, %c0 : index
      %6 = arith.cmpi ult, %2, %c0 : index
      %7 = arith.select %5, %cst, %in : f32
      %8 = arith.select %6, %cst_0, %7 : f32
      %9 = arith.cmpi eq, %4, %c0 : index
      %10 = arith.cmpi ult, %4, %c0 : index
      %11 = arith.select %9, %cst, %in_1 : f32
      %12 = arith.select %10, %cst_0, %11 : f32
      %13 = arith.mulf %8, %12 : f32
      %14 = arith.mulf %13, %extracted : f32
      %15 = arith.cmpi eq, %2, %4 : index
      %16 = arith.select %15, %cst, %cst_0 : f32
      %17 = arith.subf %16, %14 : f32
      linalg.yield %17 : f32
    } -> tensor<4x1xf32>
    return %1 : tensor<4x1xf32>
  }
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    transform.structured.vectorize %0 : !transform.any_op
    transform.yield
  }
}

@llvmbot
Copy link
Member

llvmbot commented Aug 6, 2024

@llvm/pr-subscribers-mlir

@llvm/pr-subscribers-mlir-linalg

Author: Han-Chung Wang (hanhanW)

Changes

Reverts llvm/llvm-project#99299 because it breaks the lowering. To repro: mlir-opt -transform-interpreter ~/repro.mlir

#map = affine_map&lt;(d0, d1) -&gt; (d0)&gt;
#map1 = affine_map&lt;(d0, d1) -&gt; (d1)&gt;
#map2 = affine_map&lt;(d0, d1) -&gt; (d0, d1)&gt;
#map3 = affine_map&lt;(d0, d1) -&gt; (d0 + d1)&gt;
module {
  func.func @<!-- -->foo(%arg0: index, %arg1: tensor&lt;2xf32&gt;, %arg2: tensor&lt;4xf32&gt;, %arg3: tensor&lt;1xf32&gt;) -&gt; tensor&lt;4x1xf32&gt; {
    %c0 = arith.constant 0 : index
    %cst = arith.constant 1.000000e+00 : f32
    %cst_0 = arith.constant 0.000000e+00 : f32
    %0 = tensor.empty() : tensor&lt;4x1xf32&gt;
    %1 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel"]} ins(%arg2, %arg3 : tensor&lt;4xf32&gt;, tensor&lt;1xf32&gt;) outs(%0 : tensor&lt;4x1xf32&gt;) {
    ^bb0(%in: f32, %in_1: f32, %out: f32):
      %2 = linalg.index 0 : index
      %3 = linalg.index 1 : index
      %4 = affine.apply #map3(%3, %arg0)
      %extracted = tensor.extract %arg1[%c0] : tensor&lt;2xf32&gt;
      %5 = arith.cmpi eq, %2, %c0 : index
      %6 = arith.cmpi ult, %2, %c0 : index
      %7 = arith.select %5, %cst, %in : f32
      %8 = arith.select %6, %cst_0, %7 : f32
      %9 = arith.cmpi eq, %4, %c0 : index
      %10 = arith.cmpi ult, %4, %c0 : index
      %11 = arith.select %9, %cst, %in_1 : f32
      %12 = arith.select %10, %cst_0, %11 : f32
      %13 = arith.mulf %8, %12 : f32
      %14 = arith.mulf %13, %extracted : f32
      %15 = arith.cmpi eq, %2, %4 : index
      %16 = arith.select %15, %cst, %cst_0 : f32
      %17 = arith.subf %16, %14 : f32
      linalg.yield %17 : f32
    } -&gt; tensor&lt;4x1xf32&gt;
    return %1 : tensor&lt;4x1xf32&gt;
  }
}

module attributes {transform.with_named_sequence} {
  transform.named_sequence @<!-- -->__transform_main(%arg1: !transform.any_op {transform.readonly}) {
    %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -&gt; !transform.any_op
    transform.structured.vectorize %0 : !transform.any_op
    transform.yield
  }
}

Full diff: https://github.com/llvm/llvm-project/pull/102232.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp (+20-15)
  • (modified) mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir (-56)
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index 6da886f5ec19e..3d0d6abf702d7 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -946,22 +946,27 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp,
   if (linalgOp.hasDynamicShape())
     return VectorMemoryAccessKind::Gather;
 
-  // True for vectors that are effectively 1D, e.g. `vector<1x4x1xi32>`, false
-  // otherwise.
-  bool isOutput1DVector = (llvm::count_if(targetShape, [](int64_t dimSize) {
-                             return dimSize > 1;
-                           }) == 1);
-
-  // 1. Assume that it's a gather load when reading non-1D vector.
-  if (!isOutput1DVector)
+  // 1. Assume that it's a gather load when reading _into_:
+  //    * an n-D "vector", like `tensor<1x2x4xi32` or `tensor<2x1x4xi32>`, or
+  //    * a 1-D "vector" with the trailing dim equal 1, e.g. `tensor<1x4x1xi32`.
+  // TODO: Relax these conditions.
+  // FIXME: This condition assumes non-dynamic sizes.
+  if ((llvm::count_if(targetShape,
+                      [](int64_t dimSize) { return dimSize > 1; }) != 1) ||
+      targetShape.back() == 1)
+    return VectorMemoryAccessKind::Gather;
+
+  // 2. Assume that it's a gather load when reading _from_ a tensor for which
+  // the trailing dimension is 1, e.g. `tensor<1x4x1xi32>`.
+  // TODO: Relax this condition.
+  if (inputShape.getShape().back() == 1)
     return VectorMemoryAccessKind::Gather;
 
   bool leadingIdxsLoopInvariant = true;
 
-  // 2. Analyze the leading indices of `extractOp`.
+  // 3. Analyze the leading indices of `extractOp`.
   // Look at the way each index is calculated and decide whether it is suitable
-  // for a contiguous load, i.e. whether it's loop invariant. If not, it's a
-  // gather load.
+  // for a contiguous load, i.e. whether it's loop invariant.
   auto indices = extractOp.getIndices();
   auto leadIndices = indices.drop_back(1);
 
@@ -977,13 +982,13 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp,
     return VectorMemoryAccessKind::Gather;
   }
 
-  // 3. Analyze the trailing index for `extractOp`.
+  // 4. Analyze the trailing index for `extractOp`.
   // At this point we know that the leading indices are loop invariant. This
   // means that is potentially a scalar or a contiguous load. We can decide
   // based on the trailing idx.
   auto extractOpTrailingIdx = indices.back();
 
-  // 3a. Scalar broadcast load
+  // 4a. Scalar broadcast load
   // If the trailing index is loop invariant then this is a scalar load.
   if (leadingIdxsLoopInvariant &&
       isLoopInvariantIdx(linalgOp, extractOpTrailingIdx)) {
@@ -992,7 +997,7 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp,
     return VectorMemoryAccessKind::ScalarBroadcast;
   }
 
-  // 3b. Contiguous loads
+  // 4b. Contiguous loads
   // The trailing `extractOp` index should increment with every loop iteration.
   // This effectively means that it must be based on the trailing loop index.
   // This is what the following bool captures.
@@ -1006,7 +1011,7 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp,
     return VectorMemoryAccessKind::Contiguous;
   }
 
-  // 4. Fallback case - gather load.
+  // 5. Fallback case - gather load.
   LDBG("Found gather load: " << extractOp);
   return VectorMemoryAccessKind::Gather;
 }
diff --git a/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir b/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir
index ac75a19cbeb28..85e1c56dd45a0 100644
--- a/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir
+++ b/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir
@@ -595,59 +595,3 @@ module attributes {transform.with_named_sequence} {
      transform.yield
    }
 }
-
-
-// -----
-
-func.func @vectorize_scalar_broadcast_column_tensor(%in: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> {
-  %c4 = arith.constant 4 : index
-  %c0 = arith.constant 0 : index
-  %cst = arith.constant dense<[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]]> : tensor<15x1xi32>
-
-  %out = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} outs(%in : tensor<1x1x4xi32>) {
-  ^bb0(%out: i32):
-    %8 = linalg.index 0 : index
-    %idx_0 = linalg.index 0 : index
-    %extracted = tensor.extract %cst[%idx_0, %c0] : tensor<15x1xi32>
-    linalg.yield %extracted : i32
-  } -> tensor<1x1x4xi32>
-
-  return %out:tensor<1x1x4xi32>
-}
-
-// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1) -> (0, 0, 0)>
-// CHECK-LABEL:   func.func @vectorize_scalar_broadcast_column_tensor(
-// CHECK-SAME:      %[[VAL_0:.*]]: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> {
-// CHECK:           %[[VAL_1:.*]] = arith.constant 4 : index
-// CHECK:           %[[VAL_2:.*]] = arith.constant 0 : index
-// CHECK:           %[[VAL_3:.*]] = arith.constant dense<{{\[\[}}0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]]> : tensor<15x1xi32>
-// CHECK:           %[[VAL_4:.*]] = arith.constant 1 : index
-// CHECK:           %[[VAL_5:.*]] = arith.constant 1 : index
-// CHECK:           %[[VAL_6:.*]] = arith.constant 4 : index
-// CHECK:           %[[VAL_7:.*]] = arith.constant 0 : index
-// CHECK:           %[[VAL_8:.*]] = arith.constant 0 : i32
-// CHECK:           %[[VAL_9:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_7]], %[[VAL_7]], %[[VAL_7]]], %[[VAL_8]] : tensor<1x1x4xi32>, vector<1x1x4xi32>
-// CHECK:           %[[VAL_10:.*]] = vector.step : vector<1xindex>
-// CHECK:           %[[VAL_11:.*]] = vector.broadcast %[[VAL_10]] : vector<1xindex> to vector<4x1x1xindex>
-// CHECK:           %[[VAL_12:.*]] = vector.transpose %[[VAL_11]], [2, 1, 0] : vector<4x1x1xindex> to vector<1x1x4xindex>
-// CHECK:           %[[VAL_13:.*]] = vector.step : vector<1xindex>
-// CHECK:           %[[VAL_14:.*]] = vector.broadcast %[[VAL_13]] : vector<1xindex> to vector<4x1x1xindex>
-// CHECK:           %[[VAL_15:.*]] = vector.transpose %[[VAL_14]], [2, 1, 0] : vector<4x1x1xindex> to vector<1x1x4xindex>
-// CHECK:           %[[VAL_16:.*]] = arith.constant dense<true> : vector<1x1x4xi1>
-// CHECK:           %[[VAL_17:.*]] = arith.constant dense<0> : vector<1x1x4xi32>
-// CHECK:           %[[VAL_18:.*]] = arith.constant 0 : index
-// CHECK:           %[[VAL_19:.*]] = arith.constant 0 : i32
-// CHECK:           %[[VAL_20:.*]] = vector.shape_cast %[[VAL_15]] : vector<1x1x4xindex> to vector<4xindex>
-// CHECK:           %[[VAL_21:.*]] = vector.extractelement %[[VAL_20]]{{\[}}%[[VAL_19]] : i32] : vector<4xindex>
-// CHECK:           %[[VAL_22:.*]] = arith.constant 0 : i32
-// CHECK:           %[[VAL_23:.*]] = vector.transfer_read %[[VAL_3]]{{\[}}%[[VAL_21]], %[[VAL_2]]], %[[VAL_22]] {in_bounds = [true, true, true], permutation_map = #[[$ATTR_1]]} : tensor<15x1xi32>, vector<1x1x4xi32>
-// CHECK:           %[[VAL_24:.*]] = arith.constant 0 : index
-// CHECK:           %[[VAL_25:.*]] = vector.transfer_write %[[VAL_23]], %[[VAL_0]]{{\[}}%[[VAL_24]], %[[VAL_24]], %[[VAL_24]]] : vector<1x1x4xi32>, tensor<1x1x4xi32>
-
-module attributes {transform.with_named_sequence} {
-  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
-    %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
-    transform.structured.vectorize %0  vector_sizes [1, 1, 4]{ vectorize_nd_extract } : !transform.any_op
-    transform.yield
-  }
-}

@hanhanW hanhanW merged commit 28fa83f into main Aug 6, 2024
7 of 9 checks passed
@hanhanW hanhanW deleted the revert-99299-andrzej/relax_extract_vectorization branch August 6, 2024 21:35
banach-space added a commit to banach-space/llvm-project that referenced this pull request Aug 7, 2024
)

[This reverts commit 6662523d6b2ca0198141c94ee80ebbb41601df9f]

Simplifies the vectorization of tensor.extract so that:
* all cases that read into a genuinely multi-dim vector (*) are
  considered a gather load,
* all other cases are considered as potential contiguous loads.

This change means that the following extraction from a "column" tensor
is correctly identified as a scalar load followed by a broadcast (rather
than a gather load).

```mlir
func.func @vectorize_scalar_broadcast_column_tensor(%in: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> {
  %c4 = arith.constant 4 : index
  %c0 = arith.constant 0 : index
  %cst = arith.constant dense<[...]> : tensor<15x1xi32>

  %out = linalg.generic {
    indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>],
    iterator_types = ["parallel", "parallel", "parallel"]}
    outs(%in : tensor<1x1x4xi32>) {

  ^bb0(%out: i32):
    %8 = linalg.index 0 : index
    %idx_0 = linalg.index 0 : index
    %extracted = tensor.extract %cst[%idx_0, %c0] : tensor<15x1xi32>
    linalg.yield %extracted : i32
  } -> tensor<1x1x4xi32>

  return %out:tensor<1x1x4xi32>
}
```

Overview of the delta when compared to the original submission:
  * removed an assert representing a conditon that is being relaxed
    here,
  * added a test (reading from a column tensor) based on a repro from
    @hanhanW.

(*) `vector<1x4x1xf32>` is considered as 1D vector in this context.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants