-
Notifications
You must be signed in to change notification settings - Fork 13.6k
Revert "[mlir][linalg] Relax tensor.extract vectorization" #102232
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This reverts commit 8868c02.
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-linalg Author: Han-Chung Wang (hanhanW) ChangesReverts llvm/llvm-project#99299 because it breaks the lowering. To repro: #map = affine_map<(d0, d1) -> (d0)>
#map1 = affine_map<(d0, d1) -> (d1)>
#map2 = affine_map<(d0, d1) -> (d0, d1)>
#map3 = affine_map<(d0, d1) -> (d0 + d1)>
module {
func.func @<!-- -->foo(%arg0: index, %arg1: tensor<2xf32>, %arg2: tensor<4xf32>, %arg3: tensor<1xf32>) -> tensor<4x1xf32> {
%c0 = arith.constant 0 : index
%cst = arith.constant 1.000000e+00 : f32
%cst_0 = arith.constant 0.000000e+00 : f32
%0 = tensor.empty() : tensor<4x1xf32>
%1 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel"]} ins(%arg2, %arg3 : tensor<4xf32>, tensor<1xf32>) outs(%0 : tensor<4x1xf32>) {
^bb0(%in: f32, %in_1: f32, %out: f32):
%2 = linalg.index 0 : index
%3 = linalg.index 1 : index
%4 = affine.apply #map3(%3, %arg0)
%extracted = tensor.extract %arg1[%c0] : tensor<2xf32>
%5 = arith.cmpi eq, %2, %c0 : index
%6 = arith.cmpi ult, %2, %c0 : index
%7 = arith.select %5, %cst, %in : f32
%8 = arith.select %6, %cst_0, %7 : f32
%9 = arith.cmpi eq, %4, %c0 : index
%10 = arith.cmpi ult, %4, %c0 : index
%11 = arith.select %9, %cst, %in_1 : f32
%12 = arith.select %10, %cst_0, %11 : f32
%13 = arith.mulf %8, %12 : f32
%14 = arith.mulf %13, %extracted : f32
%15 = arith.cmpi eq, %2, %4 : index
%16 = arith.select %15, %cst, %cst_0 : f32
%17 = arith.subf %16, %14 : f32
linalg.yield %17 : f32
} -> tensor<4x1xf32>
return %1 : tensor<4x1xf32>
}
}
module attributes {transform.with_named_sequence} {
transform.named_sequence @<!-- -->__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.vectorize %0 : !transform.any_op
transform.yield
}
} Full diff: https://github.com/llvm/llvm-project/pull/102232.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index 6da886f5ec19e..3d0d6abf702d7 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -946,22 +946,27 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp,
if (linalgOp.hasDynamicShape())
return VectorMemoryAccessKind::Gather;
- // True for vectors that are effectively 1D, e.g. `vector<1x4x1xi32>`, false
- // otherwise.
- bool isOutput1DVector = (llvm::count_if(targetShape, [](int64_t dimSize) {
- return dimSize > 1;
- }) == 1);
-
- // 1. Assume that it's a gather load when reading non-1D vector.
- if (!isOutput1DVector)
+ // 1. Assume that it's a gather load when reading _into_:
+ // * an n-D "vector", like `tensor<1x2x4xi32` or `tensor<2x1x4xi32>`, or
+ // * a 1-D "vector" with the trailing dim equal 1, e.g. `tensor<1x4x1xi32`.
+ // TODO: Relax these conditions.
+ // FIXME: This condition assumes non-dynamic sizes.
+ if ((llvm::count_if(targetShape,
+ [](int64_t dimSize) { return dimSize > 1; }) != 1) ||
+ targetShape.back() == 1)
+ return VectorMemoryAccessKind::Gather;
+
+ // 2. Assume that it's a gather load when reading _from_ a tensor for which
+ // the trailing dimension is 1, e.g. `tensor<1x4x1xi32>`.
+ // TODO: Relax this condition.
+ if (inputShape.getShape().back() == 1)
return VectorMemoryAccessKind::Gather;
bool leadingIdxsLoopInvariant = true;
- // 2. Analyze the leading indices of `extractOp`.
+ // 3. Analyze the leading indices of `extractOp`.
// Look at the way each index is calculated and decide whether it is suitable
- // for a contiguous load, i.e. whether it's loop invariant. If not, it's a
- // gather load.
+ // for a contiguous load, i.e. whether it's loop invariant.
auto indices = extractOp.getIndices();
auto leadIndices = indices.drop_back(1);
@@ -977,13 +982,13 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp,
return VectorMemoryAccessKind::Gather;
}
- // 3. Analyze the trailing index for `extractOp`.
+ // 4. Analyze the trailing index for `extractOp`.
// At this point we know that the leading indices are loop invariant. This
// means that is potentially a scalar or a contiguous load. We can decide
// based on the trailing idx.
auto extractOpTrailingIdx = indices.back();
- // 3a. Scalar broadcast load
+ // 4a. Scalar broadcast load
// If the trailing index is loop invariant then this is a scalar load.
if (leadingIdxsLoopInvariant &&
isLoopInvariantIdx(linalgOp, extractOpTrailingIdx)) {
@@ -992,7 +997,7 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp,
return VectorMemoryAccessKind::ScalarBroadcast;
}
- // 3b. Contiguous loads
+ // 4b. Contiguous loads
// The trailing `extractOp` index should increment with every loop iteration.
// This effectively means that it must be based on the trailing loop index.
// This is what the following bool captures.
@@ -1006,7 +1011,7 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp,
return VectorMemoryAccessKind::Contiguous;
}
- // 4. Fallback case - gather load.
+ // 5. Fallback case - gather load.
LDBG("Found gather load: " << extractOp);
return VectorMemoryAccessKind::Gather;
}
diff --git a/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir b/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir
index ac75a19cbeb28..85e1c56dd45a0 100644
--- a/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir
+++ b/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir
@@ -595,59 +595,3 @@ module attributes {transform.with_named_sequence} {
transform.yield
}
}
-
-
-// -----
-
-func.func @vectorize_scalar_broadcast_column_tensor(%in: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> {
- %c4 = arith.constant 4 : index
- %c0 = arith.constant 0 : index
- %cst = arith.constant dense<[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]]> : tensor<15x1xi32>
-
- %out = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} outs(%in : tensor<1x1x4xi32>) {
- ^bb0(%out: i32):
- %8 = linalg.index 0 : index
- %idx_0 = linalg.index 0 : index
- %extracted = tensor.extract %cst[%idx_0, %c0] : tensor<15x1xi32>
- linalg.yield %extracted : i32
- } -> tensor<1x1x4xi32>
-
- return %out:tensor<1x1x4xi32>
-}
-
-// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1) -> (0, 0, 0)>
-// CHECK-LABEL: func.func @vectorize_scalar_broadcast_column_tensor(
-// CHECK-SAME: %[[VAL_0:.*]]: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> {
-// CHECK: %[[VAL_1:.*]] = arith.constant 4 : index
-// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
-// CHECK: %[[VAL_3:.*]] = arith.constant dense<{{\[\[}}0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]]> : tensor<15x1xi32>
-// CHECK: %[[VAL_4:.*]] = arith.constant 1 : index
-// CHECK: %[[VAL_5:.*]] = arith.constant 1 : index
-// CHECK: %[[VAL_6:.*]] = arith.constant 4 : index
-// CHECK: %[[VAL_7:.*]] = arith.constant 0 : index
-// CHECK: %[[VAL_8:.*]] = arith.constant 0 : i32
-// CHECK: %[[VAL_9:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_7]], %[[VAL_7]], %[[VAL_7]]], %[[VAL_8]] : tensor<1x1x4xi32>, vector<1x1x4xi32>
-// CHECK: %[[VAL_10:.*]] = vector.step : vector<1xindex>
-// CHECK: %[[VAL_11:.*]] = vector.broadcast %[[VAL_10]] : vector<1xindex> to vector<4x1x1xindex>
-// CHECK: %[[VAL_12:.*]] = vector.transpose %[[VAL_11]], [2, 1, 0] : vector<4x1x1xindex> to vector<1x1x4xindex>
-// CHECK: %[[VAL_13:.*]] = vector.step : vector<1xindex>
-// CHECK: %[[VAL_14:.*]] = vector.broadcast %[[VAL_13]] : vector<1xindex> to vector<4x1x1xindex>
-// CHECK: %[[VAL_15:.*]] = vector.transpose %[[VAL_14]], [2, 1, 0] : vector<4x1x1xindex> to vector<1x1x4xindex>
-// CHECK: %[[VAL_16:.*]] = arith.constant dense<true> : vector<1x1x4xi1>
-// CHECK: %[[VAL_17:.*]] = arith.constant dense<0> : vector<1x1x4xi32>
-// CHECK: %[[VAL_18:.*]] = arith.constant 0 : index
-// CHECK: %[[VAL_19:.*]] = arith.constant 0 : i32
-// CHECK: %[[VAL_20:.*]] = vector.shape_cast %[[VAL_15]] : vector<1x1x4xindex> to vector<4xindex>
-// CHECK: %[[VAL_21:.*]] = vector.extractelement %[[VAL_20]]{{\[}}%[[VAL_19]] : i32] : vector<4xindex>
-// CHECK: %[[VAL_22:.*]] = arith.constant 0 : i32
-// CHECK: %[[VAL_23:.*]] = vector.transfer_read %[[VAL_3]]{{\[}}%[[VAL_21]], %[[VAL_2]]], %[[VAL_22]] {in_bounds = [true, true, true], permutation_map = #[[$ATTR_1]]} : tensor<15x1xi32>, vector<1x1x4xi32>
-// CHECK: %[[VAL_24:.*]] = arith.constant 0 : index
-// CHECK: %[[VAL_25:.*]] = vector.transfer_write %[[VAL_23]], %[[VAL_0]]{{\[}}%[[VAL_24]], %[[VAL_24]], %[[VAL_24]]] : vector<1x1x4xi32>, tensor<1x1x4xi32>
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
- transform.structured.vectorize %0 vector_sizes [1, 1, 4]{ vectorize_nd_extract } : !transform.any_op
- transform.yield
- }
-}
|
banach-space
added a commit
to banach-space/llvm-project
that referenced
this pull request
Aug 7, 2024
) [This reverts commit 6662523d6b2ca0198141c94ee80ebbb41601df9f] Simplifies the vectorization of tensor.extract so that: * all cases that read into a genuinely multi-dim vector (*) are considered a gather load, * all other cases are considered as potential contiguous loads. This change means that the following extraction from a "column" tensor is correctly identified as a scalar load followed by a broadcast (rather than a gather load). ```mlir func.func @vectorize_scalar_broadcast_column_tensor(%in: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> { %c4 = arith.constant 4 : index %c0 = arith.constant 0 : index %cst = arith.constant dense<[...]> : tensor<15x1xi32> %out = linalg.generic { indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} outs(%in : tensor<1x1x4xi32>) { ^bb0(%out: i32): %8 = linalg.index 0 : index %idx_0 = linalg.index 0 : index %extracted = tensor.extract %cst[%idx_0, %c0] : tensor<15x1xi32> linalg.yield %extracted : i32 } -> tensor<1x1x4xi32> return %out:tensor<1x1x4xi32> } ``` Overview of the delta when compared to the original submission: * removed an assert representing a conditon that is being relaxed here, * added a test (reading from a column tensor) based on a repro from @hanhanW. (*) `vector<1x4x1xf32>` is considered as 1D vector in this context.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Reverts #99299 because it breaks the lowering. To repro:
mlir-opt -transform-interpreter ~/repro.mlir