Skip to content

[mlir] Add apply_patterns.linalg.pad_vectorization TD Op #112504

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Oct 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,26 @@ def ApplyFoldAddIntoDestPatternsOp : Op<Transform_Dialect,
let assemblyFormat = "attr-dict";
}

def ApplyPadVectorizationPatternsOp : Op<Transform_Dialect,
"apply_patterns.linalg.pad_vectorization",
[DeclareOpInterfaceMethods<PatternDescriptorOpInterface>]> {
let description = [{
Apply patterns that vectorize tensor.pad.

These patterns rewrite tensor.pad Ops using vector.transfer_read and
vector.transfer_write operations. This is done either by:
1. Folding tensor.pad with an existing vector.transfer_read /
vector.transfer_write Op (generated prior to running these patterns).
2. Rewriting it (when matched together with q tensor.insert_slice
consumer Op) as a vector.transfer_read + vector.transfer_write pair.

In both cases, these patterns look at producers and consumers for the
matched tensor.pad Op to find opportunities for vectorization.
}];

let assemblyFormat = "attr-dict";
}

//===----------------------------------------------------------------------===//
// BufferizeToAllocationOp
//===----------------------------------------------------------------------===//
Expand Down
5 changes: 5 additions & 0 deletions mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -253,6 +253,11 @@ void transform::ApplyFoldAddIntoDestPatternsOp::populatePatterns(
linalg::populateFoldAddIntoDestPatterns(patterns);
}

void transform::ApplyPadVectorizationPatternsOp::populatePatterns(
RewritePatternSet &patterns) {
linalg::populatePadOpVectorizationPatterns(patterns);
}

//===----------------------------------------------------------------------===//
// BufferizeToAllocationOp
//===----------------------------------------------------------------------===//
Expand Down
3 changes: 3 additions & 0 deletions mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2712,6 +2712,9 @@ struct PadOpVectorizationWithInsertSlicePattern

void mlir::linalg::populatePadOpVectorizationPatterns(
RewritePatternSet &patterns, PatternBenefit baseBenefit) {
// TODO: The following pattern implements "decomposition" and
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit. formatting seems wrong. clang-format?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is meant to match the code below rather than the indented arguments above :)

// optional "vectorization". Seperate "decomposition" into a sepereate
// pre-processing pattern group.
patterns.add<GenericPadOpVectorizationPattern>(patterns.getContext(),
baseBenefit);
// Try these specialized patterns first before resorting to the generic one.
Expand Down
274 changes: 274 additions & 0 deletions mlir/test/Dialect/Linalg/vectorization-pad-patterns.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,274 @@
// RUN: mlir-opt %s -transform-interpreter -split-input-file | FileCheck %s

///----------------------------------------------------------------------------------------
/// [Pattern: PadOpVectorizationWithTransferReadPattern]
///----------------------------------------------------------------------------------------
// CHECK-LABEL: func @pad_and_transfer_read
// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32>
// CHECK-NOT: tensor.pad
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C5:.*]] = arith.constant 5.0
// CHECK: %[[RESULT:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]]], %[[C5]] : tensor<5x6xf32>, vector<7x9xf32>
// CHECK: return %[[RESULT]]
func.func @pad_and_transfer_read(%arg0: tensor<5x6xf32>) -> vector<7x9xf32> {
%c0 = arith.constant 0 : index
%c5 = arith.constant 5.0 : f32
%c6 = arith.constant 6.0 : f32
%0 = tensor.pad %arg0 low[0, 0] high[5, 7] {
^bb0(%arg1: index, %arg2: index):
tensor.yield %c5 : f32
} : tensor<5x6xf32> to tensor<10x13xf32>
%1 = vector.transfer_read %0[%c0, %c0], %c6
: tensor<10x13xf32>, vector<7x9xf32>
return %1 : vector<7x9xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">

transform.apply_patterns to %func_op {
transform.apply_patterns.linalg.pad_vectorization
} : !transform.op<"func.func">
transform.yield
}
}

// -----

///----------------------------------------------------------------------------------------
/// [Pattern: PadOpVectorizationWithTransferWritePattern]
///----------------------------------------------------------------------------------------
func.func private @make_vector() -> vector<7x9xf32>

// CHECK-LABEL: func @pad_and_transfer_write_static_low_and_high
// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32>
// CHECK-NOT: tensor.pad
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %[[VEC0:.*]] = call @make_vector() : () -> vector<7x9xf32>
// CHECK: %[[RESULT:.*]] = vector.transfer_write %[[VEC0]], %[[ARG0]][%[[C0]], %[[C0]]] : vector<7x9xf32>, tensor<5x6xf32>
// CHECK: return %[[RESULT]]
func.func @pad_and_transfer_write_static_low_and_high(
%arg0: tensor<5x6xf32>) -> tensor<5x6xf32> {
%c0 = arith.constant 0 : index
%c5 = arith.constant 5.0 : f32
%0 = tensor.pad %arg0 low[0, 0] high[5, 7] {
^bb0(%arg2: index, %arg3: index):
tensor.yield %c5 : f32
} : tensor<5x6xf32> to tensor<10x13xf32>
%1 = call @make_vector() : () -> vector<7x9xf32>
%2 = vector.transfer_write %1, %0[%c0, %c0]
: vector<7x9xf32>, tensor<10x13xf32>
%3 = tensor.extract_slice %2[0, 0] [5, 6] [1, 1] : tensor<10x13xf32> to tensor<5x6xf32>
return %3 : tensor<5x6xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">

transform.apply_patterns to %func_op {
transform.apply_patterns.linalg.pad_vectorization
} : !transform.op<"func.func">
transform.yield
}
}

// -----

func.func private @make_vector() -> vector<7x9xf32>

// CHECK-LABEL: func @pad_and_transfer_write_static_low_dynamic_high
// CHECK-SAME: %[[ARG0:.*]]: tensor<?x?xf32>, %[[SIZE:.*]]: index, %[[PADDING:.*]]: index
// CHECK-NOT: tensor.pad
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %[[SUB:.*]] = tensor.extract_slice %[[ARG0]][0, 0] [%[[SIZE]], 6] [1, 1] : tensor<?x?xf32> to tensor<?x6xf32>
// CHECK: %[[VEC0:.*]] = call @make_vector() : () -> vector<7x9xf32>
// CHECK: %[[RESULT:.*]] = vector.transfer_write %[[VEC0]], %[[SUB]][%[[C0]], %[[C0]]] : vector<7x9xf32>, tensor<?x6xf32>
// CHECK: return %[[RESULT]]
func.func @pad_and_transfer_write_static_low_dynamic_high(
%arg0: tensor<?x?xf32>, %size: index, %padding: index) -> tensor<?x6xf32> {
%c0 = arith.constant 0 : index
%c5 = arith.constant 5.0 : f32
%s = tensor.extract_slice %arg0[0, 0] [%size, 6] [1, 1]
: tensor<?x?xf32> to tensor<?x6xf32>
%0 = tensor.pad %s low[0, 0] high[%padding, 7] {
^bb0(%arg2: index, %arg3: index):
tensor.yield %c5 : f32
} : tensor<?x6xf32> to tensor<?x13xf32>
%1 = call @make_vector() : () -> vector<7x9xf32>
%2 = vector.transfer_write %1, %0[%c0, %c0]
: vector<7x9xf32>, tensor<?x13xf32>
%3 = tensor.extract_slice %2[0, 0] [%size, 6] [1, 1] : tensor<?x13xf32> to tensor<?x6xf32>
return %3 : tensor<?x6xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">

transform.apply_patterns to %func_op {
transform.apply_patterns.linalg.pad_vectorization
} : !transform.op<"func.func">
transform.yield
}
}


// -----

///----------------------------------------------------------------------------------------
/// [Pattern: PadOpVectorizationWithInsertSlicePattern]
///----------------------------------------------------------------------------------------

func.func private @make_vector() -> tensor<12x13xf32>

// CHECK-LABEL: func @pad_and_insert_slice_source
// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32>
// CHECK-NOT: tensor.pad
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C5:.*]] = arith.constant 5.0
// CHECK: %[[VEC0:.*]] = call @make_vector() : () -> tensor<12x13xf32>
// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]]], %[[C5]] : tensor<5x6xf32>, vector<7x9xf32>
// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[READ]], %[[VEC0]][%[[C0]], %[[C0]]] {in_bounds = [true, true]} : vector<7x9xf32>, tensor<12x13xf32>
// CHECK: return %[[WRITE]]
func.func @pad_and_insert_slice_source(
%arg0: tensor<5x6xf32>) -> tensor<12x13xf32> {
%c0 = arith.constant 0 : index
%c5 = arith.constant 5.0 : f32
%0 = tensor.pad %arg0 low[0, 0] high[2, 3] {
^bb0(%arg2: index, %arg3: index):
tensor.yield %c5 : f32
} : tensor<5x6xf32> to tensor<7x9xf32>
%1 = call @make_vector() : () -> tensor<12x13xf32>
%r = tensor.insert_slice %0 into %1[0, 0][7, 9][1, 1] : tensor<7x9xf32> into tensor<12x13xf32>
return %r : tensor<12x13xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">

transform.apply_patterns to %func_op {
transform.apply_patterns.linalg.pad_vectorization
} : !transform.op<"func.func">
transform.yield
}
}


// -----

///----------------------------------------------------------------------------------------
/// tensor::PadOp -> tensor::EmptyOp + linalg::FillOp/tensor::GenerateOp + tensor::InsertSliceOp
/// [Pattern: GenericPadOpVectorizationPattern]
///----------------------------------------------------------------------------------------

func.func private @make_vector() -> tensor<12x13xf32>

// Same as @pad_and_insert_slice_dest in vectorization-with-patterns.mlir, but
// over here linalg::fill is not vectorized (patterns for linalg.fill are not
// included here)
// CHECK-LABEL: func.func @pad_and_insert_slice_dest(
// CHECK-SAME: %[[ARG_0:.*]]: tensor<1x5x6xf32>) -> tensor<1x12x13xf32> {
// CHECK-NOT: tensor.pad
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[PAD:.*]] = arith.constant 5.000000e+00 : f32
// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<1x12x13xf32>
// CHECK: %[[FILL:.*]] = linalg.fill ins(%[[PAD]] : f32) outs(%[[EMPTY]] : tensor<1x12x13xf32>) -> tensor<1x12x13xf32>
// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG_0]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : tensor<1x5x6xf32>, vector<1x5x6xf32>
// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[READ]], %[[FILL]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x5x6xf32>, tensor<1x12x13xf32>
// CHECK: %[[VEC:.*]] = call @make_vector() : () -> tensor<12x13xf32>
// CHECK: %[[RES:.*]] = tensor.insert_slice %[[VEC]] into %[[WRITE]][0, 0, 0] [1, 12, 13] [1, 1, 1] : tensor<12x13xf32> into tensor<1x12x13xf32>
// CHECK: return %[[RES]] : tensor<1x12x13xf32>

func.func @pad_and_insert_slice_dest(
%arg0: tensor<1x5x6xf32>) -> tensor<1x12x13xf32> {
%c5 = arith.constant 5.0 : f32
%0 = tensor.pad %arg0 low[0, 0, 0] high[0, 7, 7] {
^bb0(%arg2: index, %arg3: index, %arg4: index):
tensor.yield %c5 : f32
} : tensor<1x5x6xf32> to tensor<1x12x13xf32>
%1 = call @make_vector() : () -> tensor<12x13xf32>
%r = tensor.insert_slice %1 into %0[0, 0, 0][1, 12, 13][1, 1, 1] : tensor<12x13xf32> into tensor<1x12x13xf32>
return %r : tensor<1x12x13xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">

transform.apply_patterns to %func_op {
transform.apply_patterns.linalg.pad_vectorization
} : !transform.op<"func.func">
transform.yield
}
}

// -----
func.func private @make_vector() -> vector<7x9xf32>

// Variant of @pad_and_transfer_write_static

// CHECK-LABEL: func @pad_and_transfer_write_static_non_zero_low_pad
// CHECK-NOT: tensor.pad
// CHECK: linalg.fill
func.func @pad_and_transfer_write_static_non_zero_low_pad(
%arg0: tensor<5x6xf32>) -> tensor<5x6xf32> {
%c0 = arith.constant 0 : index
%c5 = arith.constant 5.0 : f32
%0 = tensor.pad %arg0 low[0, 1] high[5, 6] {
^bb0(%arg2: index, %arg3: index):
tensor.yield %c5 : f32
} : tensor<5x6xf32> to tensor<10x13xf32>
%1 = call @make_vector() : () -> vector<7x9xf32>
%2 = vector.transfer_write %1, %0[%c0, %c0]
: vector<7x9xf32>, tensor<10x13xf32>
%3 = tensor.extract_slice %2[0, 0] [5, 6] [1, 1] : tensor<10x13xf32> to tensor<5x6xf32>
return %3 : tensor<5x6xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">

transform.apply_patterns to %func_op {
transform.apply_patterns.linalg.pad_vectorization
} : !transform.op<"func.func">
transform.yield
}
}

// -----
func.func private @make_vector() -> vector<7x9xf32>

// Variant of @pad_and_transfer_write_static

// CHECK-LABEL: func @pad_and_transfer_write_static_non_zero_offset
// CHECK-NOT: tensor.pad
// CHECK: linalg.fill
func.func @pad_and_transfer_write_static_non_zero_offset(
%arg0: tensor<5x6xf32>) -> tensor<5x6xf32> {
%c0 = arith.constant 0 : index
%c5 = arith.constant 5.0 : f32
%0 = tensor.pad %arg0 low[0, 1] high[5, 6] {
^bb0(%arg2: index, %arg3: index):
tensor.yield %c5 : f32
} : tensor<5x6xf32> to tensor<10x13xf32>
%1 = call @make_vector() : () -> vector<7x9xf32>
%2 = vector.transfer_write %1, %0[%c0, %c0]
: vector<7x9xf32>, tensor<10x13xf32>
%3 = tensor.extract_slice %2[0, 1] [5, 6] [1, 1] : tensor<10x13xf32> to tensor<5x6xf32>
return %3 : tensor<5x6xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">

transform.apply_patterns to %func_op {
transform.apply_patterns.linalg.pad_vectorization
} : !transform.op<"func.func">
transform.yield
}
}
Loading
Loading