Skip to content

[mlir][Tensor] Rework ReifyRankedShapedTypeInterface implementation for tensor.expand_shape op. #113501

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -1165,6 +1165,9 @@ def Tensor_ExpandShapeOp : Tensor_ReassociativeReshapeOp<"expand_shape"> {
let extraClassDeclaration = commonExtraClassDeclaration # [{
int64_t getCorrespondingSourceDim(int64_t resultDim);

// Return output shape as mixes static/dynamic shapes.
SmallVector<OpFoldResult> getMixedOutputShape();

// Infer the output shape for a tensor.expand_shape when it is possible
// to do so.
static FailureOr<SmallVector<OpFoldResult>> inferOutputShape(
Expand Down
3 changes: 3 additions & 0 deletions mlir/include/mlir/Dialect/Utils/StaticValueUtils.h
Original file line number Diff line number Diff line change
Expand Up @@ -144,6 +144,9 @@ bool isEqualConstantIntOrValueArray(ArrayRef<OpFoldResult> ofrs1,
/// Return a vector of OpFoldResults with the same size a staticValues, but
/// all elements for which ShapedType::isDynamic is true, will be replaced by
/// dynamicValues.
SmallVector<OpFoldResult> getMixedValues(ArrayRef<int64_t> staticValues,
ValueRange dynamicValues,
MLIRContext *context);
SmallVector<OpFoldResult> getMixedValues(ArrayRef<int64_t> staticValues,
ValueRange dynamicValues, Builder &b);

Expand Down
115 changes: 20 additions & 95 deletions mlir/lib/Dialect/Tensor/IR/TensorInferTypeOpInterfaceImpl.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -16,24 +16,6 @@
using namespace mlir;
using namespace mlir::tensor;

/// Compute a map that for a given dimension of the expanded type gives the
/// dimension in the collapsed type it maps to. Essentially its the inverse of
/// the `reassocation` maps.
static llvm::DenseMap<int64_t, int64_t>
getExpandedDimToCollapsedDimMap(ArrayRef<AffineMap> reassociation) {
llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim;
for (const auto &map : enumerate(reassociation)) {
unsigned startPos =
cast<AffineDimExpr>(map.value().getResults().front()).getPosition();
unsigned endPos =
cast<AffineDimExpr>(map.value().getResults().back()).getPosition();
for (auto dim : llvm::seq_inclusive(startPos, endPos)) {
expandedDimToCollapsedDim[dim] = map.index();
}
}
return expandedDimToCollapsedDim;
}

/// For reshape op compute the shape at dimension `dimIndex` of the output in
/// terms of shape of the `src`, when the reshape op is a collapsing
/// operation. It is the product of the shape of the collapsed dimensions of the
Expand Down Expand Up @@ -76,84 +58,15 @@ static SmallVector<OpFoldResult, 4> getCollapsedOutputShapeFromInputShape(
}));
}

/// For an expanding reshape op, compute the value for a dimension of the output
/// from the shape of the input.
static OpFoldResult getExpandedOutputDimFromInputShape(
OpBuilder &builder, Location loc, int64_t dimIndex, Value src,
ArrayRef<int64_t> dstStaticShape, ArrayRef<AffineMap> reassociation,
llvm::DenseMap<int64_t, int64_t> &expandedDimToCollapsedDim) {
if (!ShapedType::isDynamic(dstStaticShape[dimIndex])) {
// Static dimension: return Attribute.
return builder.getIndexAttr(dstStaticShape[dimIndex]);
}
unsigned sourceDimPos = expandedDimToCollapsedDim[dimIndex];
unsigned startPos =
cast<AffineDimExpr>(reassociation[sourceDimPos].getResults().front())
.getPosition();
unsigned endPos =
cast<AffineDimExpr>(reassociation[sourceDimPos].getResults().back())
.getPosition();
int64_t linearizedStaticDim = 1;
for (auto d :
llvm::enumerate(dstStaticShape.slice(startPos, endPos - startPos + 1))) {
if (d.index() + startPos == static_cast<unsigned>(dimIndex))
continue;
assert(!ShapedType::isDynamic(d.value()) &&
"single dimension cannot be expanded into multiple dynamic "
"dimensions");
linearizedStaticDim *= d.value();
}
OpFoldResult sourceDim =
builder.create<tensor::DimOp>(loc, src, sourceDimPos).getResult();

// Dynamic dimension: return Value.
return affine::makeComposedAffineApply(
builder, loc,
AffineMap::get(
0, 1,
builder.getAffineSymbolExpr(0).floorDiv(linearizedStaticDim)),
sourceDim)
->getResult(0);
}

/// Given the `src` of an expanding reshape op, the reassociation maps and the
/// result type, compute the shape of the result of the reshape.
static SmallVector<OpFoldResult, 4> getExpandedOutputShapeFromInputShape(
OpBuilder &builder, Location loc, Value src,
ArrayRef<int64_t> dstStaticShape, ArrayRef<AffineMap> reassociation) {
llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim =
getExpandedDimToCollapsedDimMap(reassociation);
return llvm::to_vector<4>(llvm::map_range(
llvm::seq<int64_t>(0, dstStaticShape.size()), [&](int64_t dim) {
return getExpandedOutputDimFromInputShape(builder, loc, dim, src,
dstStaticShape, reassociation,
expandedDimToCollapsedDim);
}));
}

static SmallVector<OpFoldResult, 4>
getReshapeOutputShapeFromInputShape(OpBuilder &builder, Location loc, Value src,
ArrayRef<int64_t> dstStaticShape,
ArrayRef<AffineMap> reassocation) {
return dstStaticShape.size() >
static_cast<size_t>(
llvm::cast<ShapedType>(src.getType()).getRank())
? getExpandedOutputShapeFromInputShape(
builder, loc, src, dstStaticShape, reassocation)
: getCollapsedOutputShapeFromInputShape(
builder, loc, src, dstStaticShape, reassocation);
}

template <typename OpTy>
struct ReifyExpandOrCollapseShapeOp
struct ReifyCollapseShapeOp
: public ReifyRankedShapedTypeOpInterface::ExternalModel<
ReifyExpandOrCollapseShapeOp<OpTy>, OpTy> {
ReifyCollapseShapeOp, CollapseShapeOp> {
LogicalResult
reifyResultShapes(Operation *op, OpBuilder &b,
ReifiedRankedShapedTypeDims &reifiedReturnShapes) const {
auto loc = op->getLoc();
auto reshapeOp = cast<OpTy>(op);
reifiedReturnShapes.push_back(getReshapeOutputShapeFromInputShape(
auto reshapeOp = cast<tensor::CollapseShapeOp>(op);
reifiedReturnShapes.push_back(getCollapsedOutputShapeFromInputShape(
b, loc, reshapeOp.getSrc(), reshapeOp.getResultType().getShape(),
reshapeOp.getReassociationMaps()));
return success();
Expand All @@ -162,6 +75,20 @@ struct ReifyExpandOrCollapseShapeOp

namespace {

struct ReifyExpandShapeOp
: public ReifyRankedShapedTypeOpInterface::ExternalModel<ReifyExpandShapeOp,
ExpandShapeOp> {
LogicalResult
reifyResultShapes(Operation *op, OpBuilder &b,
ReifiedRankedShapedTypeDims &reifyResultShapes) const {
auto expandShapeOp = cast<tensor::ExpandShapeOp>(op);
SmallVector<OpFoldResult> resultShapes =
expandShapeOp.getMixedOutputShape();
reifyResultShapes.emplace_back(std::move(resultShapes));
return success();
}
};

struct ReifyPadOp
: public ReifyRankedShapedTypeOpInterface::ExternalModel<ReifyPadOp,
PadOp> {
Expand Down Expand Up @@ -202,10 +129,8 @@ struct ReifyPadOp
void mlir::tensor::registerInferTypeOpInterfaceExternalModels(
DialectRegistry &registry) {
registry.addExtension(+[](MLIRContext *ctx, TensorDialect *dialect) {
ExpandShapeOp::attachInterface<
ReifyExpandOrCollapseShapeOp<tensor::ExpandShapeOp>>(*ctx);
CollapseShapeOp::attachInterface<
ReifyExpandOrCollapseShapeOp<tensor::CollapseShapeOp>>(*ctx);
ExpandShapeOp::attachInterface<ReifyExpandShapeOp>(*ctx);
CollapseShapeOp::attachInterface<ReifyCollapseShapeOp>(*ctx);
PadOp::attachInterface<ReifyPadOp>(*ctx);
});
}
4 changes: 4 additions & 0 deletions mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1732,6 +1732,10 @@ ExpandShapeOp::inferOutputShape(OpBuilder &b, Location loc,
return *outputShape;
}

SmallVector<OpFoldResult> ExpandShapeOp::getMixedOutputShape() {
return getMixedValues(getStaticOutputShape(), getOutputShape(), getContext());
}

void ExpandShapeOp::build(OpBuilder &builder, OperationState &result,
Type resultType, Value src,
ArrayRef<ReassociationIndices> reassociation,
Expand Down
10 changes: 8 additions & 2 deletions mlir/lib/Dialect/Utils/StaticValueUtils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -191,7 +191,8 @@ bool isEqualConstantIntOrValueArray(ArrayRef<OpFoldResult> ofrs1,
/// elements for which ShapedType::isDynamic is true, will be replaced by
/// dynamicValues.
SmallVector<OpFoldResult> getMixedValues(ArrayRef<int64_t> staticValues,
ValueRange dynamicValues, Builder &b) {
ValueRange dynamicValues,
MLIRContext *context) {
SmallVector<OpFoldResult> res;
res.reserve(staticValues.size());
unsigned numDynamic = 0;
Expand All @@ -200,10 +201,15 @@ SmallVector<OpFoldResult> getMixedValues(ArrayRef<int64_t> staticValues,
int64_t value = staticValues[idx];
res.push_back(ShapedType::isDynamic(value)
? OpFoldResult{dynamicValues[numDynamic++]}
: OpFoldResult{b.getI64IntegerAttr(staticValues[idx])});
: OpFoldResult{IntegerAttr::get(
IntegerType::get(context, 64), staticValues[idx])});
}
return res;
}
SmallVector<OpFoldResult> getMixedValues(ArrayRef<int64_t> staticValues,
ValueRange dynamicValues, Builder &b) {
return getMixedValues(staticValues, dynamicValues, b.getContext());
}

/// Decompose a vector of mixed static or dynamic values into the corresponding
/// pair of arrays. This is the inverse function of `getMixedValues`.
Expand Down
8 changes: 0 additions & 8 deletions mlir/lib/Interfaces/InferTypeOpInterface.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -48,14 +48,6 @@ mlir::reifyResultShapes(OpBuilder &b, Operation *op,
assert(shapedType.getRank() ==
static_cast<int64_t>(reifiedReturnShapes[resultIdx].size()) &&
"incorrect implementation of ReifyRankedShapedTypeOpInterface");
for (int64_t dim = 0; dim < shapedType.getRank(); ++dim) {
// reifyResultShapes must return:
// * Attribute for static dimensions
// * Value for dynamic dimensions
assert(shapedType.isDynamicDim(dim) ==
isa<Value>(reifiedReturnShapes[resultIdx][dim]) &&
"incorrect implementation of ReifyRankedShapedTypeOpInterface");
}
++resultIdx;
}
// Assert that every shaped value result was reified.
Expand Down
7 changes: 2 additions & 5 deletions mlir/test/Dialect/Linalg/resolve-shaped-type-result-dims.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -210,15 +210,12 @@ func.func @dim_reshape_expansion(%arg0 : tensor<6x5x?xf32>, %sz0: index) -> (ind
%3 = tensor.dim %0, %c4 : tensor<2x3x5x4x?x7xf32>
return %1, %2, %3 : index, index, index
}
// CHECK: #[[MAP:.+]] = affine_map<()[s0] -> (s0 floordiv 28)>
// CHECK: func @dim_reshape_expansion
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<6x5x?xf32>
// CHECK-DAG: %[[C2:.+]] = arith.constant 2 : index
// CHECK-SAME: %[[ARG1:.+]]: index
// CHECK-DAG: %[[C3:.+]] = arith.constant 3 : index
// CHECK-DAG: %[[C4:.+]] = arith.constant 4 : index
// CHECK: %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C2]]
// CHECK: %[[D1:.+]] = affine.apply #[[MAP]]()[%[[D0]]]
// CHECK: return %[[C3]], %[[C4]], %[[D1]]
// CHECK: return %[[C3]], %[[C4]], %[[ARG1]]

// -----

Expand Down
9 changes: 3 additions & 6 deletions mlir/test/Dialect/Tensor/fold-empty-op.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,6 @@ module attributes {transform.with_named_sequence} {
}
}

// CHECK: #[[$MAP:.+]] = affine_map<()[s0] -> (s0 floordiv 28)>
// CHECK: #[[$MAP2:.+]] = affine_map<()[s0] -> (s0 * 28)>

func.func @empty_reshape_expansion(%arg0 : index, %sz0: index) -> tensor<2x3x5x4x?x7xf32> {
Expand All @@ -19,11 +18,9 @@ func.func @empty_reshape_expansion(%arg0 : index, %sz0: index) -> tensor<2x3x5x4
return %1 : tensor<2x3x5x4x?x7xf32>
}
// CHECK-LABEL: func @empty_reshape_expansion
// CHECK-SAME: %[[ARG0:.+]]: index
// CHECK: %[[OLD_INIT:.+]] = tensor.empty(%{{.*}}) : tensor<6x5x?xf32>
// CHECK-NEXT: %[[DIM:.*]] = tensor.dim %[[OLD_INIT]]
// CHECK-NEXT: %[[D:.+]] = affine.apply #[[$MAP]]()[%[[DIM]]]
// CHECK-NEXT: %[[INIT:.+]] = tensor.empty(%[[D]])
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: index,
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: index
// CHECK-NEXT: %[[INIT:.+]] = tensor.empty(%[[ARG1]])
// CHECK-NEXT: return %[[INIT]]

func.func @empty_reshape_collapse(%arg0 : index) -> tensor<6x5x?xf32> {
Expand Down
Loading