Skip to content

[mlir][linalg] Enable Vectorization of 0-D tensor.extract #119079

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 0 additions & 5 deletions mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1115,11 +1115,6 @@ vectorizeTensorExtract(RewriterBase &rewriter, VectorizationState &state,
// b. contiguous loads.
// Both cases use vector.transfer_read.

assert(llvm::count_if(resultType.getShape(),
[](uint64_t dim) { return dim != 1; }) &&
"Contiguous loads and scalar loads + broadcast only support 1-D "
"vectors ATM!");

// Collect indices for `vector.transfer_read`. At this point, the indices will
// either be scalars or would have been broadcast to vectors matching the
// result type. For indices that are vectors, there are two options:
Expand Down
48 changes: 45 additions & 3 deletions mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -122,6 +122,48 @@ module attributes {transform.with_named_sequence} {

// -----

#map = affine_map<() -> ()>

// CHECK-LABEL: func.func @generic_0d(
// CHECK-SAME: %[[ARG_0:.*]]: tensor<f32>, %[[ARG_1:.*]]: tensor<f32>, %[[ARG_2:.*]]: tensor<f32>)
func.func @generic_0d(%arg0: tensor<f32>, %arg1: tensor<f32>,
%arg2: tensor<f32>) -> tensor<f32> {
// CHECK: %[[PAD:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[READ_0:.*]] = vector.transfer_read %[[ARG_0]][], %[[PAD]] : tensor<f32>, vector<f32>
// CHECK: %[[ARG_0_AS_SCALAR:.*]] = vector.extract %[[READ_0]][] : f32 from vector<f32>
// CHECK: %[[READ_1:.*]] = vector.transfer_read %[[ARG_1]][], %[[PAD]] : tensor<f32>, vector<f32>
// CHECK: %[[ARG_1_AS_SCALAR:.*]] = vector.extract %[[READ_1]][] : f32 from vector<f32>
// CHECK: %[[READ_2:.*]] = vector.transfer_read %[[ARG_2]][], %[[PAD]] : tensor<f32>, vector<f32>
// CHECK: %[[ARG_2_AS_SCALAR:.*]] = vector.extract %[[READ_2]][] : f32 from vector<f32>
// CHECK: %[[MULF:.*]] = arith.mulf %[[ARG_0_AS_SCALAR]], %[[ARG_1_AS_SCALAR]] : f32
// CHECK: %[[ADDF:.*]] = arith.addf %[[ARG_2_AS_SCALAR]], %[[MULF]] : f32
// CHECK: %[[ADDF_BCAST:.*]] = vector.broadcast %[[ADDF]] : f32 to vector<f32>
// CHECK: vector.transfer_write %[[ADDF_BCAST]], %[[ARG_2]][] : vector<f32>, tensor<f32>
%res = linalg.generic {
indexing_maps = [#map, #map, #map],
iterator_types = []
} ins(%arg0, %arg1 : tensor<f32>, tensor<f32>)
outs(%arg2 : tensor<f32>) {
^bb(%a: f32, %b: f32, %c: f32) :
%d = arith.mulf %a, %b: f32
%e = arith.addf %c, %d: f32
linalg.yield %e : f32
} -> tensor<f32>

return %res : tensor<f32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { disable_multi_reduction_to_contract_patterns, disable_transfer_permutation_map_lowering_patterns } : (!transform.any_op) -> !transform.any_op
transform.yield
}
}

// -----

#matmul_transpose_out_trait = {
indexing_maps = [
affine_map<(m, n, k) -> (m, k)>,
Expand Down Expand Up @@ -372,7 +414,7 @@ module attributes {transform.with_named_sequence} {
// -----

// CHECK-LABEL: func @test_vectorize_fill
func.func @test_vectorize_fill_scalar(%A : memref<f32>, %arg0 : f32) {
func.func @test_vectorize_fill_0d(%A : memref<f32>, %arg0 : f32) {
// CHECK-SAME: (%[[M:.*]]: memref<f32>, %[[val:.*]]: f32)
// CHECK: %[[VEC:.*]] = vector.broadcast %[[val]] : f32 to vector<f32>
// CHECK: vector.transfer_write %[[VEC]], %[[M]][] : vector<f32>, memref<f32>
Expand Down Expand Up @@ -410,8 +452,8 @@ module attributes {transform.with_named_sequence} {

// -----

// CHECK-LABEL: func @test_vectorize_copy_scalar
func.func @test_vectorize_copy_scalar(%A : memref<f32>, %B : memref<f32>) {
// CHECK-LABEL: func @test_vectorize_copy_0d
func.func @test_vectorize_copy_0d(%A : memref<f32>, %B : memref<f32>) {
// CHECK-SAME: (%[[A:.*]]: memref<f32>, %[[B:.*]]: memref<f32>)
// CHECK: %[[V:.*]] = vector.transfer_read %[[A]][]{{.*}} : memref<f32>, vector<f32>
// CHECK: %[[val:.*]] = vector.extract %[[V]][] : f32 from vector<f32>
Expand Down
58 changes: 48 additions & 10 deletions mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -39,29 +39,67 @@ module attributes {transform.with_named_sequence} {
// -----

#map = affine_map<() -> ()>
func.func @negative_no_loops(%arg0: tensor<f32>, %arg1: tensor<f32>) -> tensor<f32> {
%1 = linalg.generic {
func.func @extract_scalar_from_0d_into_0d(%src: tensor<f32>, %init: tensor<f32>) -> tensor<f32> {
%res = linalg.generic {
indexing_maps = [#map],
iterator_types = []
} outs(%arg1 : tensor<f32>) {
^bb0(%arg4: f32):
%2 = tensor.extract %arg0[] : tensor<f32>
linalg.yield %2 : f32
} outs(%init : tensor<f32>) {
^bb0(%in: f32):
%1 = tensor.extract %src[] : tensor<f32>
linalg.yield %1 : f32
} -> tensor<f32>
return %1 : tensor<f32>

return %res : tensor<f32>
}
// CHECK-LABEL: func.func @negative_no_loops
// CHECK: tensor.extract

// CHECK-LABEL: func.func @extract_scalar_from_0d_into_0d(
// CHECK-SAME: %[[SRC:.*]]: tensor<f32>,
// CHECK-SAME: %[[INIT:.*]]: tensor<f32>) -> tensor<f32> {
// CHECK: %[[PAD:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]][], %[[PAD]] : tensor<f32>, vector<f32>
// CHECK: vector.transfer_write %[[READ]], %[[INIT]][] : vector<f32>, tensor<f32>

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
transform.yield
}
}

// -----

#map = affine_map<(n) -> (n)>
func.func @extract_scalar_from_0d_into_1d(%src: tensor<f32>, %init: tensor<1xf32>) -> tensor<1xf32> {
%res = linalg.generic {
indexing_maps = [#map],
iterator_types = ["parallel"]
} outs(%init : tensor<1xf32>) {
^bb0(%in: f32):
%1 = tensor.extract %src[] : tensor<f32>
linalg.yield %1 : f32
} -> tensor<1xf32>

return %res : tensor<1xf32>
}
// CHECK-LABEL: func.func @extract_scalar_from_0d_into_1d(
// CHECK-SAME: %[[SRC:.*]]: tensor<f32>,
// CHECK-SAME: %[[INIT:.*]]: tensor<1xf32>) -> tensor<1xf32> {
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %[[PAD:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]][], %[[PAD]] : tensor<f32>, vector<f32>
// CHECK: %[[READ_BCAST:.*]] = vector.broadcast %[[READ]] : vector<f32> to vector<1xf32>
// CHECK: vector.transfer_write %[[READ_BCAST]], %[[INIT]][%[[C0]]] {in_bounds = [true]} : vector<1xf32>, tensor<1xf32>

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
transform.yield
}
}

// -----

Expand Down
Loading