-
Notifications
You must be signed in to change notification settings - Fork 13.6k
[mlir][tosa] Support unranked input/weight tensors for convolution ops #134856
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
@llvm/pr-subscribers-mlir Author: Luke Hutton (lhutton1) ChangesThis commit ensures that convolution operators including: conv2d, depthwise_conv2d, transpose_conv2d and conv3d, can have unranked input/weight operands. In order to support operands with unranked tensors, the tablegen definition was relaxed. The relaxation of tensor type will later be checked by the validation pass, should the user wish to use it. Full diff: https://github.com/llvm/llvm-project/pull/134856.diff 5 Files Affected:
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
index 741de84cc5840..7e5c62536d2fb 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
@@ -124,7 +124,7 @@ def Tosa_Conv2DOp : Tosa_ConvOp<"conv2d"> {
let arguments = (ins
Tosa_Tensor4D:$input,
- TosaTensorRankOf<[Tosa_Weight], [4]>:$weight,
+ Tosa_Tensor4D:$weight,
Tosa_Tensor1D:$bias,
Tosa_ScalarIntOrFloatTensor:$input_zp,
Tosa_ScalarIntOrFloatTensor:$weight_zp,
@@ -169,7 +169,7 @@ def Tosa_Conv3DOp : Tosa_ConvOp<"conv3d"> {
let arguments = (ins
Tosa_Tensor5D:$input,
- TosaTensorRankOf<[Tosa_Weight], [5]>:$weight,
+ Tosa_Tensor5D:$weight,
Tosa_Tensor1D:$bias,
Tosa_ScalarIntOrFloatTensor:$input_zp,
Tosa_ScalarIntOrFloatTensor:$weight_zp,
@@ -215,7 +215,7 @@ def Tosa_DepthwiseConv2DOp : Tosa_ConvOp<"depthwise_conv2d"> {
let arguments = (ins
Tosa_Tensor4D:$input,
- TosaTensorRankOf<[Tosa_Weight], [4]>:$weight,
+ Tosa_Tensor4D:$weight,
Tosa_Tensor1D:$bias,
Tosa_ScalarIntOrFloatTensor:$input_zp,
Tosa_ScalarIntOrFloatTensor:$weight_zp,
@@ -429,7 +429,7 @@ def Tosa_TransposeConv2DOp : Tosa_ConvOp<"transpose_conv2d"> {
let arguments = (ins
Tosa_Tensor4D:$input,
- TosaTensorRankOf<[Tosa_Weight], [4]>:$weight,
+ Tosa_Tensor4D:$weight,
Tosa_Tensor1D:$bias,
Tosa_ScalarIntOrFloatTensor:$input_zp,
Tosa_ScalarIntOrFloatTensor:$weight_zp,
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaTypesBase.td b/mlir/include/mlir/Dialect/Tosa/IR/TosaTypesBase.td
index 67011f22fbe2a..b9ac1ff705514 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaTypesBase.td
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaTypesBase.td
@@ -84,11 +84,6 @@ def Tosa_QuantizedInt : AnyTypeOf<[Tosa_QuantizedType<"uint8", [8], 0>,
def Tosa_AnyNumber : AnyTypeOf<[Tosa_Int, Tosa_QuantizedInt, AnyFloat],
"number">;
-// For weight tensors from tosa::Conv2DOp, tosa::Conv3DOp,
-// tosa::DepthwiseConv2DOp, tosa::TransposeConv2DOp
-def Tosa_Weight : AnyTypeOf<[Tosa_Int4, Tosa_Int8,
- Tosa_QuantizedInt, AnyFloat]>;
-
//===----------------------------------------------------------------------===//
// TOSA Tensor Conformance
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
index 59946ca54b933..ee4333f4ba36e 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
@@ -282,14 +282,14 @@ static LogicalResult verifyConvOp(T op) {
// tensors.
auto inputType = llvm::dyn_cast<RankedTensorType>(op.getInput().getType());
if (!inputType) {
- op.emitOpError("expect a ranked tensor for input, got ") << op.getInput();
- return failure();
+ // Skip following checks if input is not ranked
+ return success();
}
auto weightType = llvm::dyn_cast<RankedTensorType>(op.getWeight().getType());
if (!weightType) {
- op.emitOpError("expect a ranked tensor for weight, got ") << op.getWeight();
- return failure();
+ // Skip following checks if weight is not ranked
+ return success();
}
auto inputEType = inputType.getElementType();
@@ -2899,14 +2899,6 @@ LogicalResult TransposeConv2DOp::verify() {
return emitOpError("expect all stride values to be >= 1, got [")
<< strides << "]";
- const auto inputType = llvm::dyn_cast<RankedTensorType>(getInput().getType());
-
- const auto outputType =
- llvm::dyn_cast<RankedTensorType>(getOutput().getType());
-
- const auto weightType =
- llvm::dyn_cast<RankedTensorType>(getWeight().getType());
-
const auto checkPadAgainstKernelDim =
[this](int64_t pad_value, int64_t kernel_dim_size,
llvm::StringRef pad_name,
@@ -2920,69 +2912,77 @@ LogicalResult TransposeConv2DOp::verify() {
};
const llvm::ArrayRef<int64_t> padding = getOutPad();
-
const int64_t outPadTop = padding[0];
const int64_t outPadBottom = padding[1];
+ const int64_t outPadLeft = padding[2];
+ const int64_t outPadRight = padding[3];
- const int64_t kernelHeight = weightType.getDimSize(1);
-
- if (!ShapedType::isDynamic(kernelHeight)) {
- if (failed(checkPadAgainstKernelDim(outPadTop, kernelHeight, "out_pad_top",
- "KH")))
- return failure();
-
- if (failed(checkPadAgainstKernelDim(outPadBottom, kernelHeight,
- "out_pad_bottom", "KH")))
- return failure();
- }
+ const auto weightType =
+ llvm::dyn_cast<RankedTensorType>(getWeight().getType());
- const int64_t kernelWidth = weightType.getDimSize(2);
+ if (weightType) {
+ const int64_t kernelHeight = weightType.getDimSize(1);
+ if (!ShapedType::isDynamic(kernelHeight)) {
+ if (failed(checkPadAgainstKernelDim(outPadTop, kernelHeight, "out_pad_top",
+ "KH")))
+ return failure();
- const int64_t outPadLeft = padding[2];
- const int64_t outPadRight = padding[3];
+ if (failed(checkPadAgainstKernelDim(outPadBottom, kernelHeight,
+ "out_pad_bottom", "KH")))
+ return failure();
+ }
- if (!ShapedType::isDynamic(kernelWidth)) {
- if (failed(checkPadAgainstKernelDim(outPadLeft, kernelWidth, "out_pad_left",
- "KW")))
- return failure();
+ const int64_t kernelWidth = weightType.getDimSize(2);
+ if (!ShapedType::isDynamic(kernelWidth)) {
+ if (failed(checkPadAgainstKernelDim(outPadLeft, kernelWidth, "out_pad_left",
+ "KW")))
+ return failure();
- if (failed(checkPadAgainstKernelDim(outPadRight, kernelWidth,
- "out_pad_right", "KW")))
- return failure();
+ if (failed(checkPadAgainstKernelDim(outPadRight, kernelWidth,
+ "out_pad_right", "KW")))
+ return failure();
+ }
}
// Rest of the checks depend on the output type being a RankedTensorType
+ const auto outputType =
+ llvm::dyn_cast<RankedTensorType>(getOutput().getType());
if (!outputType)
return success();
- const int64_t inputHeight = inputType.getDimSize(1);
- const int64_t outputHeight = outputType.getDimSize(1);
-
- if (!ShapedType::isDynamic(inputHeight) &&
- !ShapedType::isDynamic(outputHeight)) {
- if (outputHeight !=
- (inputHeight - 1) * strideY + outPadTop + outPadBottom + kernelHeight)
- return emitOpError(
- "dimension mismatch: expected OH == (IH - 1) * stride_y "
- "+ out_pad_top + out_pad_bottom + KH, but got ")
- << outputHeight << " != (" << inputHeight << " - 1) * " << strideY
- << " + " << outPadTop << " + " << outPadBottom << " + "
- << kernelHeight;
- }
+ const auto inputType = llvm::dyn_cast<RankedTensorType>(getInput().getType());
+ if (inputType && weightType) {
+ const int64_t inputHeight = inputType.getDimSize(1);
+ const int64_t kernelHeight = weightType.getDimSize(1);
+ const int64_t outputHeight = outputType.getDimSize(1);
+
+ if (!ShapedType::isDynamic(inputHeight) &&
+ !ShapedType::isDynamic(outputHeight)) {
+ if (outputHeight !=
+ (inputHeight - 1) * strideY + outPadTop + outPadBottom + kernelHeight)
+ return emitOpError(
+ "dimension mismatch: expected OH == (IH - 1) * stride_y "
+ "+ out_pad_top + out_pad_bottom + KH, but got ")
+ << outputHeight << " != (" << inputHeight << " - 1) * " << strideY
+ << " + " << outPadTop << " + " << outPadBottom << " + "
+ << kernelHeight;
+ }
- const int64_t inputWidth = inputType.getDimSize(2);
- const int64_t outputWidth = outputType.getDimSize(2);
+ const int64_t inputWidth = inputType.getDimSize(2);
+ const int64_t kernelWidth = weightType.getDimSize(2);
+ const int64_t outputWidth = outputType.getDimSize(2);
- if (!ShapedType::isDynamic(inputWidth) &&
- !ShapedType::isDynamic(outputWidth)) {
- if (outputWidth !=
- (inputWidth - 1) * strideX + outPadLeft + outPadRight + kernelWidth)
- return emitOpError(
- "dimension mismatch: expected OW == (IW - 1) * stride_x "
- "+ out_pad_left + out_pad_right + KW, but got ")
- << outputWidth << " != (" << inputWidth << " - 1) * " << strideX
- << " + " << outPadLeft << " + " << outPadRight << " + "
- << kernelWidth;
+ if (!ShapedType::isDynamic(inputWidth) &&
+ !ShapedType::isDynamic(outputWidth)) {
+ if (outputWidth !=
+ (inputWidth - 1) * strideX + outPadLeft + outPadRight + kernelWidth)
+ return emitOpError(
+ "dimension mismatch: expected OW == (IW - 1) * stride_x "
+ "+ out_pad_left + out_pad_right + KW, but got ")
+ << outputWidth << " != (" << inputWidth << " - 1) * " << strideX
+ << " + " << outPadLeft << " + " << outPadRight << " + "
+ << kernelWidth;
+ }
}
const auto biasType = llvm::dyn_cast<RankedTensorType>(getBias().getType());
diff --git a/mlir/test/Dialect/Tosa/invalid.mlir b/mlir/test/Dialect/Tosa/invalid.mlir
index 12b2379a592c3..ad764443b97de 100644
--- a/mlir/test/Dialect/Tosa/invalid.mlir
+++ b/mlir/test/Dialect/Tosa/invalid.mlir
@@ -33,19 +33,9 @@ func.func @test_conv2d(%arg0: tensor<1x29x29x4xf32>, %arg1: tensor<16x3x3x4xi8>,
// -----
-func.func @test_conv2d(%arg0: tensor<*xi8>, %arg1: tensor<16x3x3x4xi8>, %arg2: tensor<16xi8>) -> tensor<1x27x27x16xi8> {
- %zp = "tosa.const"() {values = dense<0> : tensor<1xi8>} : () -> tensor<1xi8>
- // expected-error@+1 {{'tosa.conv2d' op expect a ranked tensor for input, got <block argument> of type 'tensor<*xi8>' at index: 0}}
- %0 = tosa.conv2d %arg0, %arg1, %arg2, %zp, %zp {acc_type = i32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>}
- : (tensor<*xi8>, tensor<16x3x3x4xi8>, tensor<16xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x27x27x16xi8>
- return %0 : tensor<1x27x27x16xi8>
-}
-
-// -----
-
func.func @test_conv2d(%arg0: tensor<1x29x29x4xi8>, %arg1: tensor<*xi8>, %arg2: tensor<16xi8>) -> tensor<1x27x27x16xi8> {
%zp = "tosa.const"() {values = dense<0> : tensor<1xi8>} : () -> tensor<1xi8>
- // expected-error@+1 {{'tosa.conv2d' op operand #1 must be 4D tensor of 4-bit signless integer or 8-bit signless integer or Quint8 type or Qint4 type or Qint8 type or Qint16 type or Qint32 type or floating-point values, but got 'tensor<*xi8>'}}
+ // expected-error@+1 {{'tosa.conv2d' op illegal: operand/result data types not supported}}
%0 = tosa.conv2d %arg0, %arg1, %arg2, %zp, %zp {acc_type = i32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>}
: (tensor<1x29x29x4xi8>, tensor<*xi8>, tensor<16xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x27x27x16xi8>
return %0 : tensor<1x27x27x16xi8>
diff --git a/mlir/test/Dialect/Tosa/ops.mlir b/mlir/test/Dialect/Tosa/ops.mlir
index 248d84da6b8b9..35978060a134a 100644
--- a/mlir/test/Dialect/Tosa/ops.mlir
+++ b/mlir/test/Dialect/Tosa/ops.mlir
@@ -70,6 +70,13 @@ func.func @test_conv2d(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<8x1x1x4xf32>, %
return %0 : tensor<1x4x4x8xf32>
}
+// -----
+// CHECK-LABEL: conv2d_unranked_input
+func.func @test_conv2d_unranked_input(%arg0: tensor<*xf32>, %arg1: tensor<8x1x1x4xf32>, %arg2: tensor<8xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x4x8xf32> {
+ %0 = tosa.conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, local_bound = true} : (tensor<*xf32>, tensor<8x1x1x4xf32>, tensor<8xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x4x8xf32>
+ return %0 : tensor<1x4x4x8xf32>
+}
+
// -----
// CHECK-LABEL: conv2d_quant_uniform
func.func @test_conv2d_quant_uniform(%arg0: tensor<1x4x4x4x!quant.uniform<i8:f32, 0.01>>, %arg1: tensor<8x1x1x4x!quant.uniform<i8:f32, 0.01>>, %arg2: tensor<8x!quant.uniform<i8:f32, 0.01>>) -> tensor<1x4x4x8x!quant.uniform<i32:f32, 0.01>> {
@@ -202,6 +209,20 @@ func.func @test_transpose_conv2d(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x
return %0 : tensor<1x32x32x16xf32>
}
+// -----
+// CHECK-LABEL: transpose_conv2d_unranked_input
+func.func @test_transpose_conv2d_unranked_input(%arg0: tensor<*xf32>, %arg1: tensor<16x1x1x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x32x32x16xf32> {
+ %0 = tosa.transpose_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, out_pad = array<i64: 0, 0, 0, 0>, out_shape = array<i64: 1, 32, 32, 16>, stride = array<i64: 1, 1>} : (tensor<*xf32>, tensor<16x1x1x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x32x32x16xf32>
+ return %0 : tensor<1x32x32x16xf32>
+}
+
+// -----
+// CHECK-LABEL: transpose_conv2d_unranked_weight
+func.func @test_transpose_conv2d_unranked_weight(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<*xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x32x32x16xf32> {
+ %0 = tosa.transpose_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, out_pad = array<i64: 0, 0, 0, 0>, out_shape = array<i64: 1, 32, 32, 16>, stride = array<i64: 1, 1>} : (tensor<1x32x32x8xf32>, tensor<*xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x32x32x16xf32>
+ return %0 : tensor<1x32x32x16xf32>
+}
+
// -----
// CHECK-LABEL: transpose_conv2d_with_local_bound
func.func @test_transpose_conv2d_with_local_bound(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x1x1x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x32x32x16xf32> {
|
@llvm/pr-subscribers-mlir-tosa Author: Luke Hutton (lhutton1) ChangesThis commit ensures that convolution operators including: conv2d, depthwise_conv2d, transpose_conv2d and conv3d, can have unranked input/weight operands. In order to support operands with unranked tensors, the tablegen definition was relaxed. The relaxation of tensor type will later be checked by the validation pass, should the user wish to use it. Full diff: https://github.com/llvm/llvm-project/pull/134856.diff 5 Files Affected:
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
index 741de84cc5840..7e5c62536d2fb 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
@@ -124,7 +124,7 @@ def Tosa_Conv2DOp : Tosa_ConvOp<"conv2d"> {
let arguments = (ins
Tosa_Tensor4D:$input,
- TosaTensorRankOf<[Tosa_Weight], [4]>:$weight,
+ Tosa_Tensor4D:$weight,
Tosa_Tensor1D:$bias,
Tosa_ScalarIntOrFloatTensor:$input_zp,
Tosa_ScalarIntOrFloatTensor:$weight_zp,
@@ -169,7 +169,7 @@ def Tosa_Conv3DOp : Tosa_ConvOp<"conv3d"> {
let arguments = (ins
Tosa_Tensor5D:$input,
- TosaTensorRankOf<[Tosa_Weight], [5]>:$weight,
+ Tosa_Tensor5D:$weight,
Tosa_Tensor1D:$bias,
Tosa_ScalarIntOrFloatTensor:$input_zp,
Tosa_ScalarIntOrFloatTensor:$weight_zp,
@@ -215,7 +215,7 @@ def Tosa_DepthwiseConv2DOp : Tosa_ConvOp<"depthwise_conv2d"> {
let arguments = (ins
Tosa_Tensor4D:$input,
- TosaTensorRankOf<[Tosa_Weight], [4]>:$weight,
+ Tosa_Tensor4D:$weight,
Tosa_Tensor1D:$bias,
Tosa_ScalarIntOrFloatTensor:$input_zp,
Tosa_ScalarIntOrFloatTensor:$weight_zp,
@@ -429,7 +429,7 @@ def Tosa_TransposeConv2DOp : Tosa_ConvOp<"transpose_conv2d"> {
let arguments = (ins
Tosa_Tensor4D:$input,
- TosaTensorRankOf<[Tosa_Weight], [4]>:$weight,
+ Tosa_Tensor4D:$weight,
Tosa_Tensor1D:$bias,
Tosa_ScalarIntOrFloatTensor:$input_zp,
Tosa_ScalarIntOrFloatTensor:$weight_zp,
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaTypesBase.td b/mlir/include/mlir/Dialect/Tosa/IR/TosaTypesBase.td
index 67011f22fbe2a..b9ac1ff705514 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaTypesBase.td
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaTypesBase.td
@@ -84,11 +84,6 @@ def Tosa_QuantizedInt : AnyTypeOf<[Tosa_QuantizedType<"uint8", [8], 0>,
def Tosa_AnyNumber : AnyTypeOf<[Tosa_Int, Tosa_QuantizedInt, AnyFloat],
"number">;
-// For weight tensors from tosa::Conv2DOp, tosa::Conv3DOp,
-// tosa::DepthwiseConv2DOp, tosa::TransposeConv2DOp
-def Tosa_Weight : AnyTypeOf<[Tosa_Int4, Tosa_Int8,
- Tosa_QuantizedInt, AnyFloat]>;
-
//===----------------------------------------------------------------------===//
// TOSA Tensor Conformance
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
index 59946ca54b933..ee4333f4ba36e 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
@@ -282,14 +282,14 @@ static LogicalResult verifyConvOp(T op) {
// tensors.
auto inputType = llvm::dyn_cast<RankedTensorType>(op.getInput().getType());
if (!inputType) {
- op.emitOpError("expect a ranked tensor for input, got ") << op.getInput();
- return failure();
+ // Skip following checks if input is not ranked
+ return success();
}
auto weightType = llvm::dyn_cast<RankedTensorType>(op.getWeight().getType());
if (!weightType) {
- op.emitOpError("expect a ranked tensor for weight, got ") << op.getWeight();
- return failure();
+ // Skip following checks if weight is not ranked
+ return success();
}
auto inputEType = inputType.getElementType();
@@ -2899,14 +2899,6 @@ LogicalResult TransposeConv2DOp::verify() {
return emitOpError("expect all stride values to be >= 1, got [")
<< strides << "]";
- const auto inputType = llvm::dyn_cast<RankedTensorType>(getInput().getType());
-
- const auto outputType =
- llvm::dyn_cast<RankedTensorType>(getOutput().getType());
-
- const auto weightType =
- llvm::dyn_cast<RankedTensorType>(getWeight().getType());
-
const auto checkPadAgainstKernelDim =
[this](int64_t pad_value, int64_t kernel_dim_size,
llvm::StringRef pad_name,
@@ -2920,69 +2912,77 @@ LogicalResult TransposeConv2DOp::verify() {
};
const llvm::ArrayRef<int64_t> padding = getOutPad();
-
const int64_t outPadTop = padding[0];
const int64_t outPadBottom = padding[1];
+ const int64_t outPadLeft = padding[2];
+ const int64_t outPadRight = padding[3];
- const int64_t kernelHeight = weightType.getDimSize(1);
-
- if (!ShapedType::isDynamic(kernelHeight)) {
- if (failed(checkPadAgainstKernelDim(outPadTop, kernelHeight, "out_pad_top",
- "KH")))
- return failure();
-
- if (failed(checkPadAgainstKernelDim(outPadBottom, kernelHeight,
- "out_pad_bottom", "KH")))
- return failure();
- }
+ const auto weightType =
+ llvm::dyn_cast<RankedTensorType>(getWeight().getType());
- const int64_t kernelWidth = weightType.getDimSize(2);
+ if (weightType) {
+ const int64_t kernelHeight = weightType.getDimSize(1);
+ if (!ShapedType::isDynamic(kernelHeight)) {
+ if (failed(checkPadAgainstKernelDim(outPadTop, kernelHeight, "out_pad_top",
+ "KH")))
+ return failure();
- const int64_t outPadLeft = padding[2];
- const int64_t outPadRight = padding[3];
+ if (failed(checkPadAgainstKernelDim(outPadBottom, kernelHeight,
+ "out_pad_bottom", "KH")))
+ return failure();
+ }
- if (!ShapedType::isDynamic(kernelWidth)) {
- if (failed(checkPadAgainstKernelDim(outPadLeft, kernelWidth, "out_pad_left",
- "KW")))
- return failure();
+ const int64_t kernelWidth = weightType.getDimSize(2);
+ if (!ShapedType::isDynamic(kernelWidth)) {
+ if (failed(checkPadAgainstKernelDim(outPadLeft, kernelWidth, "out_pad_left",
+ "KW")))
+ return failure();
- if (failed(checkPadAgainstKernelDim(outPadRight, kernelWidth,
- "out_pad_right", "KW")))
- return failure();
+ if (failed(checkPadAgainstKernelDim(outPadRight, kernelWidth,
+ "out_pad_right", "KW")))
+ return failure();
+ }
}
// Rest of the checks depend on the output type being a RankedTensorType
+ const auto outputType =
+ llvm::dyn_cast<RankedTensorType>(getOutput().getType());
if (!outputType)
return success();
- const int64_t inputHeight = inputType.getDimSize(1);
- const int64_t outputHeight = outputType.getDimSize(1);
-
- if (!ShapedType::isDynamic(inputHeight) &&
- !ShapedType::isDynamic(outputHeight)) {
- if (outputHeight !=
- (inputHeight - 1) * strideY + outPadTop + outPadBottom + kernelHeight)
- return emitOpError(
- "dimension mismatch: expected OH == (IH - 1) * stride_y "
- "+ out_pad_top + out_pad_bottom + KH, but got ")
- << outputHeight << " != (" << inputHeight << " - 1) * " << strideY
- << " + " << outPadTop << " + " << outPadBottom << " + "
- << kernelHeight;
- }
+ const auto inputType = llvm::dyn_cast<RankedTensorType>(getInput().getType());
+ if (inputType && weightType) {
+ const int64_t inputHeight = inputType.getDimSize(1);
+ const int64_t kernelHeight = weightType.getDimSize(1);
+ const int64_t outputHeight = outputType.getDimSize(1);
+
+ if (!ShapedType::isDynamic(inputHeight) &&
+ !ShapedType::isDynamic(outputHeight)) {
+ if (outputHeight !=
+ (inputHeight - 1) * strideY + outPadTop + outPadBottom + kernelHeight)
+ return emitOpError(
+ "dimension mismatch: expected OH == (IH - 1) * stride_y "
+ "+ out_pad_top + out_pad_bottom + KH, but got ")
+ << outputHeight << " != (" << inputHeight << " - 1) * " << strideY
+ << " + " << outPadTop << " + " << outPadBottom << " + "
+ << kernelHeight;
+ }
- const int64_t inputWidth = inputType.getDimSize(2);
- const int64_t outputWidth = outputType.getDimSize(2);
+ const int64_t inputWidth = inputType.getDimSize(2);
+ const int64_t kernelWidth = weightType.getDimSize(2);
+ const int64_t outputWidth = outputType.getDimSize(2);
- if (!ShapedType::isDynamic(inputWidth) &&
- !ShapedType::isDynamic(outputWidth)) {
- if (outputWidth !=
- (inputWidth - 1) * strideX + outPadLeft + outPadRight + kernelWidth)
- return emitOpError(
- "dimension mismatch: expected OW == (IW - 1) * stride_x "
- "+ out_pad_left + out_pad_right + KW, but got ")
- << outputWidth << " != (" << inputWidth << " - 1) * " << strideX
- << " + " << outPadLeft << " + " << outPadRight << " + "
- << kernelWidth;
+ if (!ShapedType::isDynamic(inputWidth) &&
+ !ShapedType::isDynamic(outputWidth)) {
+ if (outputWidth !=
+ (inputWidth - 1) * strideX + outPadLeft + outPadRight + kernelWidth)
+ return emitOpError(
+ "dimension mismatch: expected OW == (IW - 1) * stride_x "
+ "+ out_pad_left + out_pad_right + KW, but got ")
+ << outputWidth << " != (" << inputWidth << " - 1) * " << strideX
+ << " + " << outPadLeft << " + " << outPadRight << " + "
+ << kernelWidth;
+ }
}
const auto biasType = llvm::dyn_cast<RankedTensorType>(getBias().getType());
diff --git a/mlir/test/Dialect/Tosa/invalid.mlir b/mlir/test/Dialect/Tosa/invalid.mlir
index 12b2379a592c3..ad764443b97de 100644
--- a/mlir/test/Dialect/Tosa/invalid.mlir
+++ b/mlir/test/Dialect/Tosa/invalid.mlir
@@ -33,19 +33,9 @@ func.func @test_conv2d(%arg0: tensor<1x29x29x4xf32>, %arg1: tensor<16x3x3x4xi8>,
// -----
-func.func @test_conv2d(%arg0: tensor<*xi8>, %arg1: tensor<16x3x3x4xi8>, %arg2: tensor<16xi8>) -> tensor<1x27x27x16xi8> {
- %zp = "tosa.const"() {values = dense<0> : tensor<1xi8>} : () -> tensor<1xi8>
- // expected-error@+1 {{'tosa.conv2d' op expect a ranked tensor for input, got <block argument> of type 'tensor<*xi8>' at index: 0}}
- %0 = tosa.conv2d %arg0, %arg1, %arg2, %zp, %zp {acc_type = i32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>}
- : (tensor<*xi8>, tensor<16x3x3x4xi8>, tensor<16xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x27x27x16xi8>
- return %0 : tensor<1x27x27x16xi8>
-}
-
-// -----
-
func.func @test_conv2d(%arg0: tensor<1x29x29x4xi8>, %arg1: tensor<*xi8>, %arg2: tensor<16xi8>) -> tensor<1x27x27x16xi8> {
%zp = "tosa.const"() {values = dense<0> : tensor<1xi8>} : () -> tensor<1xi8>
- // expected-error@+1 {{'tosa.conv2d' op operand #1 must be 4D tensor of 4-bit signless integer or 8-bit signless integer or Quint8 type or Qint4 type or Qint8 type or Qint16 type or Qint32 type or floating-point values, but got 'tensor<*xi8>'}}
+ // expected-error@+1 {{'tosa.conv2d' op illegal: operand/result data types not supported}}
%0 = tosa.conv2d %arg0, %arg1, %arg2, %zp, %zp {acc_type = i32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>}
: (tensor<1x29x29x4xi8>, tensor<*xi8>, tensor<16xi8>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x27x27x16xi8>
return %0 : tensor<1x27x27x16xi8>
diff --git a/mlir/test/Dialect/Tosa/ops.mlir b/mlir/test/Dialect/Tosa/ops.mlir
index 248d84da6b8b9..35978060a134a 100644
--- a/mlir/test/Dialect/Tosa/ops.mlir
+++ b/mlir/test/Dialect/Tosa/ops.mlir
@@ -70,6 +70,13 @@ func.func @test_conv2d(%arg0: tensor<1x4x4x4xf32>, %arg1: tensor<8x1x1x4xf32>, %
return %0 : tensor<1x4x4x8xf32>
}
+// -----
+// CHECK-LABEL: conv2d_unranked_input
+func.func @test_conv2d_unranked_input(%arg0: tensor<*xf32>, %arg1: tensor<8x1x1x4xf32>, %arg2: tensor<8xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x4x4x8xf32> {
+ %0 = tosa.conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, local_bound = true} : (tensor<*xf32>, tensor<8x1x1x4xf32>, tensor<8xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x4x4x8xf32>
+ return %0 : tensor<1x4x4x8xf32>
+}
+
// -----
// CHECK-LABEL: conv2d_quant_uniform
func.func @test_conv2d_quant_uniform(%arg0: tensor<1x4x4x4x!quant.uniform<i8:f32, 0.01>>, %arg1: tensor<8x1x1x4x!quant.uniform<i8:f32, 0.01>>, %arg2: tensor<8x!quant.uniform<i8:f32, 0.01>>) -> tensor<1x4x4x8x!quant.uniform<i32:f32, 0.01>> {
@@ -202,6 +209,20 @@ func.func @test_transpose_conv2d(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x
return %0 : tensor<1x32x32x16xf32>
}
+// -----
+// CHECK-LABEL: transpose_conv2d_unranked_input
+func.func @test_transpose_conv2d_unranked_input(%arg0: tensor<*xf32>, %arg1: tensor<16x1x1x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x32x32x16xf32> {
+ %0 = tosa.transpose_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, out_pad = array<i64: 0, 0, 0, 0>, out_shape = array<i64: 1, 32, 32, 16>, stride = array<i64: 1, 1>} : (tensor<*xf32>, tensor<16x1x1x8xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x32x32x16xf32>
+ return %0 : tensor<1x32x32x16xf32>
+}
+
+// -----
+// CHECK-LABEL: transpose_conv2d_unranked_weight
+func.func @test_transpose_conv2d_unranked_weight(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<*xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x32x32x16xf32> {
+ %0 = tosa.transpose_conv2d %arg0, %arg1, %arg2, %arg3, %arg4 {acc_type = f32, out_pad = array<i64: 0, 0, 0, 0>, out_shape = array<i64: 1, 32, 32, 16>, stride = array<i64: 1, 1>} : (tensor<1x32x32x8xf32>, tensor<*xf32>, tensor<16xf32>, tensor<1xf32>, tensor<1xf32>) -> tensor<1x32x32x16xf32>
+ return %0 : tensor<1x32x32x16xf32>
+}
+
// -----
// CHECK-LABEL: transpose_conv2d_with_local_bound
func.func @test_transpose_conv2d_with_local_bound(%arg0: tensor<1x32x32x8xf32>, %arg1: tensor<16x1x1x8xf32>, %arg2: tensor<16xf32>, %arg3: tensor<1xf32>, %arg4: tensor<1xf32>) -> tensor<1x32x32x16xf32> {
|
✅ With the latest revision this PR passed the C/C++ code formatter. |
6464c24
to
26cb5f8
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks @lhutton1, looks good! Two comments.
26cb5f8
to
40a5eb5
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks for the changes, LGTM!
This commit ensures that convolution operators including: conv2d, depthwise_conv2d, transpose_conv2d and conv3d, can have unranked input/weight operands. In order to support operands with unranked tensors, the tablegen definition was relaxed. The relaxation of tensor type will later be checked by the validation pass, should the user wish to use it. Change-Id: I33334909e0d4d0676daae81bfc4647e86abc063a Signed-off-by: Luke Hutton <[email protected]>
40a5eb5
to
19abbc0
Compare
llvm#134856) This commit ensures that convolution operators including: conv2d, depthwise_conv2d, transpose_conv2d and conv3d, can have unranked input/weight operands. In order to support operands with unranked tensors, the tablegen definition was relaxed. The relaxation of tensor type will later be checked by the validation pass, should the user wish to use it. Signed-off-by: Luke Hutton <[email protected]>
llvm#134856) This commit ensures that convolution operators including: conv2d, depthwise_conv2d, transpose_conv2d and conv3d, can have unranked input/weight operands. In order to support operands with unranked tensors, the tablegen definition was relaxed. The relaxation of tensor type will later be checked by the validation pass, should the user wish to use it. Signed-off-by: Luke Hutton <[email protected]>
llvm#134856) This commit ensures that convolution operators including: conv2d, depthwise_conv2d, transpose_conv2d and conv3d, can have unranked input/weight operands. In order to support operands with unranked tensors, the tablegen definition was relaxed. The relaxation of tensor type will later be checked by the validation pass, should the user wish to use it. Signed-off-by: Luke Hutton <[email protected]>
llvm#134856) This commit ensures that convolution operators including: conv2d, depthwise_conv2d, transpose_conv2d and conv3d, can have unranked input/weight operands. In order to support operands with unranked tensors, the tablegen definition was relaxed. The relaxation of tensor type will later be checked by the validation pass, should the user wish to use it. Signed-off-by: Luke Hutton <[email protected]>
This commit ensures that convolution operators including: conv2d, depthwise_conv2d, transpose_conv2d and conv3d, can have unranked input/weight operands.
In order to support operands with unranked tensors, the tablegen definition was relaxed. The relaxation of tensor type will later be checked by the validation pass, should the user wish to use it.