Skip to content

[mlir][vector] Relax constraints on shape_cast #136587

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
May 1, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 6 additions & 18 deletions mlir/include/mlir/Dialect/Vector/IR/VectorOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -2244,18 +2244,8 @@ def Vector_ShapeCastOp :
Results<(outs AnyVectorOfAnyRank:$result)> {
let summary = "shape_cast casts between vector shapes";
let description = [{
The shape_cast operation casts between an n-D source vector shape and
a k-D result vector shape (the element type remains the same).

If reducing rank (n > k), result dimension sizes must be a product
of contiguous source dimension sizes.
If expanding rank (n < k), source dimensions must factor into a
contiguous sequence of destination dimension sizes.
Each source dim is expanded (or contiguous sequence of source dims combined)
in source dimension list order (i.e. 0 <= i < n), to produce a contiguous
sequence of result dims (or a single result dim), in result dimension list
order (i.e. 0 <= j < k). The product of all source dimension sizes and all
result dimension sizes must match.
Casts to a vector with the same number of elements, element type, and
number of scalable dimensions.

It is currently assumed that this operation does not require moving data,
and that it will be folded away before lowering vector operations.
Expand All @@ -2265,15 +2255,13 @@ def Vector_ShapeCastOp :
2-D MLIR vector to a 1-D flattened LLVM vector.shape_cast lowering to LLVM
is supported in that particular case, for now.

Example:
Examples:

```mlir
// Example casting to a lower vector rank.
%1 = vector.shape_cast %0 : vector<5x1x4x3xf32> to vector<20x3xf32>

// Example casting to a higher vector rank.
%3 = vector.shape_cast %2 : vector<10x12x8xf32> to vector<5x2x3x4x8xf32>
%1 = vector.shape_cast %0 : vector<4x3xf32> to vector<3x2x2xf32>

// with 2 scalable dimensions (number of which must be preserved).
%3 = vector.shape_cast %2 : vector<[2]x3x[4]xi8> to vector<3x[1]x[8]xi8>
```
}];
let extraClassDeclaration = [{
Expand Down
120 changes: 26 additions & 94 deletions mlir/lib/Dialect/Vector/IR/VectorOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -5505,124 +5505,56 @@ void ShapeCastOp::inferResultRanges(ArrayRef<ConstantIntRanges> argRanges,
setResultRanges(getResult(), argRanges.front());
}

/// Returns true if each element of 'a' is equal to the product of a contiguous
/// sequence of the elements of 'b'. Returns false otherwise.
static bool isValidShapeCast(ArrayRef<int64_t> a, ArrayRef<int64_t> b) {
unsigned rankA = a.size();
unsigned rankB = b.size();
assert(rankA < rankB);

auto isOne = [](int64_t v) { return v == 1; };

// Special-case for n-D to 0-d shape cast. 'b' must be all ones to be shape
// casted to a 0-d vector.
if (rankA == 0 && llvm::all_of(b, isOne))
return true;
LogicalResult ShapeCastOp::verify() {

unsigned i = 0;
unsigned j = 0;
while (i < rankA && j < rankB) {
int64_t dimA = a[i];
int64_t dimB = 1;
while (dimB < dimA && j < rankB)
dimB *= b[j++];
if (dimA != dimB)
break;
++i;
VectorType sourceType = getSourceVectorType();
VectorType resultType = getResultVectorType();

// Handle the case when trailing dimensions are of size 1.
// Include them into the contiguous sequence.
if (i < rankA && llvm::all_of(a.slice(i), isOne))
i = rankA;
if (j < rankB && llvm::all_of(b.slice(j), isOne))
j = rankB;
}
// Check that element type is preserved
if (sourceType.getElementType() != resultType.getElementType())
return emitOpError("has different source and result element types");

return i == rankA && j == rankB;
}

static LogicalResult verifyVectorShapeCast(Operation *op,
VectorType sourceVectorType,
VectorType resultVectorType) {
// Check that element type is the same.
if (sourceVectorType.getElementType() != resultVectorType.getElementType())
return op->emitOpError("source/result vectors must have same element type");
auto sourceShape = sourceVectorType.getShape();
auto resultShape = resultVectorType.getShape();

// Check that product of source dim sizes matches product of result dim sizes.
int64_t sourceDimProduct = std::accumulate(
sourceShape.begin(), sourceShape.end(), 1LL, std::multiplies<int64_t>{});
int64_t resultDimProduct = std::accumulate(
resultShape.begin(), resultShape.end(), 1LL, std::multiplies<int64_t>{});
if (sourceDimProduct != resultDimProduct)
return op->emitOpError("source/result number of elements must match");

// Check that expanding/contracting rank cases.
unsigned sourceRank = sourceVectorType.getRank();
unsigned resultRank = resultVectorType.getRank();
if (sourceRank < resultRank) {
if (!isValidShapeCast(sourceShape, resultShape))
return op->emitOpError("invalid shape cast");
} else if (sourceRank > resultRank) {
if (!isValidShapeCast(resultShape, sourceShape))
return op->emitOpError("invalid shape cast");
// Check that number of elements is preserved
int64_t sourceNElms = sourceType.getNumElements();
int64_t resultNElms = resultType.getNumElements();
if (sourceNElms != resultNElms) {
return emitOpError() << "has different number of elements at source ("
<< sourceNElms << ") and result (" << resultNElms
<< ")";
}

// Check that (non-)scalability is preserved
int64_t sourceNScalableDims = sourceVectorType.getNumScalableDims();
int64_t resultNScalableDims = resultVectorType.getNumScalableDims();
int64_t sourceNScalableDims = sourceType.getNumScalableDims();
int64_t resultNScalableDims = resultType.getNumScalableDims();
if (sourceNScalableDims != resultNScalableDims)
return op->emitOpError("different number of scalable dims at source (")
<< sourceNScalableDims << ") and result (" << resultNScalableDims
<< ")";
sourceVectorType.getNumDynamicDims();

return success();
}

LogicalResult ShapeCastOp::verify() {
auto sourceVectorType =
llvm::dyn_cast_or_null<VectorType>(getSource().getType());
auto resultVectorType =
llvm::dyn_cast_or_null<VectorType>(getResult().getType());

// Check if source/result are of vector type.
if (sourceVectorType && resultVectorType)
return verifyVectorShapeCast(*this, sourceVectorType, resultVectorType);
return emitOpError() << "has different number of scalable dims at source ("
<< sourceNScalableDims << ") and result ("
<< resultNScalableDims << ")";

return success();
}

OpFoldResult ShapeCastOp::fold(FoldAdaptor adaptor) {

VectorType resultType = getType();

// No-op shape cast.
if (getSource().getType() == getType())
if (getSource().getType() == resultType)
return getSource();

VectorType resultType = getType();

// Canceling shape casts.
// Y = shape_cast(shape_cast(X)))
// -> X, if X and Y have same type
// -> shape_cast(X) otherwise.
if (auto otherOp = getSource().getDefiningOp<ShapeCastOp>()) {

// Only allows valid transitive folding (expand/collapse dimensions).
VectorType srcType = otherOp.getSource().getType();
if (resultType == srcType)
return otherOp.getSource();
if (srcType.getRank() < resultType.getRank()) {
if (!isValidShapeCast(srcType.getShape(), resultType.getShape()))
return {};
} else if (srcType.getRank() > resultType.getRank()) {
if (!isValidShapeCast(resultType.getShape(), srcType.getShape()))
return {};
} else {
return {};
}
setOperand(otherOp.getSource());
return getResult();
}

// Cancelling broadcast and shape cast ops.
// Y = shape_cast(broadcast(X))
// -> X, if X and Y have same type
if (auto bcastOp = getSource().getDefiningOp<BroadcastOp>()) {
if (bcastOp.getSourceType() == resultType)
return bcastOp.getSource();
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -26,8 +26,7 @@ func.func @transpose4x8xf32(%arg0: vector<4x8xf32>) -> vector<8x4xf32> {
// CHECK-NEXT: vector.insert {{.*}}[1]
// CHECK-NEXT: vector.insert {{.*}}[2]
// CHECK-NEXT: vector.insert {{.*}}[3]
// CHECK-NEXT: vector.shape_cast {{.*}} vector<4x8xf32> to vector<32xf32>
// CHECK-NEXT: vector.shape_cast {{.*}} vector<32xf32> to vector<8x4xf32>
// CHECK-NEXT: vector.shape_cast {{.*}} vector<4x8xf32> to vector<8x4xf32>
%0 = vector.transpose %arg0, [1, 0] : vector<4x8xf32> to vector<8x4xf32>
return %0 : vector<8x4xf32>
}
Expand All @@ -54,8 +53,7 @@ func.func @transpose021_1x4x8xf32(%arg0: vector<1x4x8xf32>) -> vector<1x8x4xf32>
// CHECK-NEXT: vector.insert {{.*}}[1]
// CHECK-NEXT: vector.insert {{.*}}[2]
// CHECK-NEXT: vector.insert {{.*}}[3]
// CHECK-NEXT: vector.shape_cast {{.*}} vector<4x8xf32> to vector<32xf32>
// CHECK-NEXT: vector.shape_cast {{.*}} vector<32xf32> to vector<1x8x4xf32>
// CHECK-NEXT: vector.shape_cast {{.*}} vector<4x8xf32> to vector<1x8x4xf32>
%0 = vector.transpose %arg0, [0, 2, 1] : vector<1x4x8xf32> to vector<1x8x4xf32>
return %0 : vector<1x8x4xf32>
}
Expand Down
7 changes: 3 additions & 4 deletions mlir/test/Dialect/Vector/canonicalize.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -950,10 +950,9 @@ func.func @insert_no_fold_scalar_to_0d(%v: vector<f32>) -> vector<f32> {

// -----

// CHECK-LABEL: dont_fold_expand_collapse
// CHECK: %[[A:.*]] = vector.shape_cast %{{.*}} : vector<1x1x64xf32> to vector<1x1x8x8xf32>
// CHECK: %[[B:.*]] = vector.shape_cast %{{.*}} : vector<1x1x8x8xf32> to vector<8x8xf32>
// CHECK: return %[[B]] : vector<8x8xf32>
// CHECK-LABEL: fold_expand_collapse
// CHECK: %[[A:.*]] = vector.shape_cast %{{.*}} : vector<1x1x64xf32> to vector<8x8xf32>
// CHECK: return %[[A]] : vector<8x8xf32>
func.func @dont_fold_expand_collapse(%arg0: vector<1x1x64xf32>) -> vector<8x8xf32> {
%0 = vector.shape_cast %arg0 : vector<1x1x64xf32> to vector<1x1x8x8xf32>
%1 = vector.shape_cast %0 : vector<1x1x8x8xf32> to vector<8x8xf32>
Expand Down
19 changes: 3 additions & 16 deletions mlir/test/Dialect/Vector/invalid.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -1131,34 +1131,21 @@ func.func @cannot_print_string_with_source_set(%vec: vector<[4]xf32>) {

// -----


func.func @shape_cast_wrong_element_type(%arg0 : vector<5x1x3x2xf32>) {
// expected-error@+1 {{op source/result vectors must have same element type}}
// expected-error@+1 {{'vector.shape_cast' op has different source and result element types}}
%0 = vector.shape_cast %arg0 : vector<5x1x3x2xf32> to vector<15x2xi32>
}

// -----

func.func @shape_cast_wrong_num_elements(%arg0 : vector<5x1x3x2xf32>) {
// expected-error@+1 {{op source/result number of elements must match}}
// expected-error@+1 {{'vector.shape_cast' op has different number of elements at source (30) and result (20)}}
%0 = vector.shape_cast %arg0 : vector<5x1x3x2xf32> to vector<10x2xf32>
}

// -----

func.func @shape_cast_invalid_rank_reduction(%arg0 : vector<5x1x3x2xf32>) {
// expected-error@+1 {{invalid shape cast}}
%0 = vector.shape_cast %arg0 : vector<5x1x3x2xf32> to vector<2x15xf32>
}

// -----

func.func @shape_cast_invalid_rank_expansion(%arg0 : vector<15x2xf32>) {
// expected-error@+1 {{invalid shape cast}}
%0 = vector.shape_cast %arg0 : vector<15x2xf32> to vector<5x2x3x1xf32>
}

// -----

func.func @shape_cast_scalability_flag_is_dropped(%arg0 : vector<15x[2]xf32>) {
// expected-error@+1 {{different number of scalable dims at source (1) and result (0)}}
%0 = vector.shape_cast %arg0 : vector<15x[2]xf32> to vector<30xf32>
Expand Down
11 changes: 11 additions & 0 deletions mlir/test/Dialect/Vector/ops.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -564,6 +564,17 @@ func.func @shape_cast(%arg0 : vector<5x1x3x2xf32>,
return %0, %1, %2, %3 : vector<15x2xf32>, vector<8xf32>, vector<16xf32>, vector<16x1xf32>
}

// A vector.shape_cast can cast between any 2 shapes as long as the
// number of elements is preserved. For those familiar with the tensor
// dialect: this behaviour is like the tensor.reshape operation, i.e.
// less restrictive than tensor.collapse_shape and tensor.expand_shape
// CHECK-LABEL: @shape_cast_general_reshape
func.func @shape_cast_general_reshape(%arg0 : vector<2x3xf32>) -> (vector<3x1x2xf32>) {
// CHECK: vector.shape_cast %{{.*}} : vector<2x3xf32> to vector<3x1x2xf32>
%0 = vector.shape_cast %arg0 : vector<2x3xf32> to vector<3x1x2xf32>
return %0 : vector<3x1x2xf32>
}

// CHECK-LABEL: @shape_cast_0d
func.func @shape_cast_0d(%arg0 : vector<1x1x1x1xf32>) -> (vector<1x1x1x1xf32>) {

Expand Down