Skip to content

[mlir] [vector] Add linearization pattern for vector.create_mask #138214

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 12 commits into from
May 14, 2025
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
65 changes: 62 additions & 3 deletions mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -445,6 +445,64 @@ struct LinearizeVectorSplat final
}
};

/// This pattern converts the CreateMaskOp to work on a linearized vector.
/// It currently supports only 2D masks with a unit outer dimension.
/// Following,
/// vector.create_mask %arg0, %arg1 : vector<1x4xi1>
/// is converted to:
/// %zero = arith.constant 0 : index
/// %cmpi = arith.cmpi sgt, %arg0, %zero : index
/// %index = arith.index_cast %cmpi : i1 to index
/// %mul = arith.muli %index, %arg1 : index
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this mul looks like and bitwise 'and' operation to me?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

oh yes, good catch. Thanks

/// %mask = vector.create_mask %mul : vector<4xi1>
/// %shape_cast = vector.shape_cast %mask : vector<4xi1> to vector<1x4xi1>
struct LinearizeVectorCreateMask final
: OpConversionPattern<vector::CreateMaskOp> {
using OpConversionPattern::OpConversionPattern;

LinearizeVectorCreateMask(const TypeConverter &typeConverter,
MLIRContext *context, PatternBenefit benefit = 1)
: OpConversionPattern(typeConverter, context, benefit) {}

LogicalResult
matchAndRewrite(vector::CreateMaskOp createMaskOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = createMaskOp.getLoc();
VectorType srcTy = createMaskOp.getType();
auto srcShape = srcTy.getShape();
if (srcShape.size() != 2)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Consider adding
// FIXME: add support for any vector with at most 1 non-unit dimension (like vector<1x4x1xi1>)
here

return rewriter.notifyMatchFailure(createMaskOp,
"only 2D mask is supported.");

if (srcShape[0] != 1)
return rewriter.notifyMatchFailure(
createMaskOp, "only unit outer dimension is supported.");

auto dstTy = getTypeConverter()->convertType(srcTy);
if (!dstTy)
return rewriter.notifyMatchFailure(createMaskOp, "cannot convert type.");

// Compare the first operand with 0. If it is greater than 0, the
// corresponding mask element is set to true, otherwise false.
// The result of the comparison is then multiplied with
// the second operand of create_mask to get the 1D mask.
auto firstOperand = adaptor.getOperands().front();
auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
auto isNonZero = rewriter.create<mlir::arith::CmpIOp>(
loc, mlir::arith::CmpIPredicate::sgt, firstOperand, zero);
auto isNonZeroIndex = rewriter.create<mlir::arith::IndexCastOp>(
loc, rewriter.getIndexType(), isNonZero);
auto secondOperand = adaptor.getOperands().back();
auto maskSize = rewriter.create<mlir::arith::MulIOp>(
loc, rewriter.getIndexType(), isNonZeroIndex, secondOperand);

auto newMask = rewriter.create<mlir::vector::CreateMaskOp>(
loc, dstTy, maskSize.getResult());
rewriter.replaceOp(createMaskOp, newMask);
return success();
}
};

} // namespace

/// Return true if the operation `op` does not support scalable vectors and
Expand Down Expand Up @@ -530,9 +588,10 @@ void mlir::vector::populateForVectorLinearize(TypeConverter &typeConverter,
void mlir::vector::populateVectorLinearizeBasePatterns(
const TypeConverter &typeConverter, const ConversionTarget &target,
RewritePatternSet &patterns) {
patterns.add<LinearizeConstantLike, LinearizeVectorizable,
LinearizeVectorBitCast, LinearizeVectorSplat>(
typeConverter, patterns.getContext());
patterns
.add<LinearizeConstantLike, LinearizeVectorizable, LinearizeVectorBitCast,
LinearizeVectorSplat, LinearizeVectorCreateMask>(
typeConverter, patterns.getContext());
}

void mlir::vector::populateVectorLinearizeShuffleLikeOpsPatterns(
Expand Down
17 changes: 17 additions & 0 deletions mlir/test/Dialect/Vector/linearize.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -345,3 +345,20 @@ func.func @linearize_scalable_vector_splat(%arg0: i32) -> vector<4x[2]xi32> {
%0 = vector.splat %arg0 : vector<4x[2]xi32>
return %0 : vector<4x[2]xi32>
}

// -----

// CHECK-LABEL: linearize_create_mask
// CHECK-SAME: (%[[ARG0:.*]]: index, %[[ARG1:.*]]: index) -> vector<1x16xi1>
func.func @linearize_create_mask(%arg0 : index, %arg1 : index) -> vector<1x16xi1> {

// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %[[CMP:.*]] = arith.cmpi sgt, %[[ARG0]], %[[C0]] : index
// CHECK: %[[INDEXCAST:.*]] = arith.index_cast %[[CMP]] : i1 to index
// CHECK: %[[MULI:.*]] = arith.muli %[[INDEXCAST]], %[[ARG1]] : index
// CHECK: %[[MASK_1D:.*]] = vector.create_mask %[[MULI]] : vector<16xi1>
// CHECK: %[[CAST:.*]] = vector.shape_cast %[[MASK_1D]] : vector<16xi1> to vector<1x16xi1>
// CHECK: return %[[CAST]] : vector<1x16xi1>
%0 = vector.create_mask %arg0, %arg1 : vector<1x16xi1>
return %0 : vector<1x16xi1>
}
2 changes: 1 addition & 1 deletion mlir/test/lib/Dialect/Vector/TestVectorTransforms.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -973,7 +973,7 @@ struct TestVectorLinearize final
return "Linearizes ND vectors for N >= 2 into 1D vectors";
}
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<vector::VectorDialect>();
registry.insert<vector::VectorDialect, arith::ArithDialect>();
}

void runOnOperation() override {
Expand Down
Loading