-
Notifications
You must be signed in to change notification settings - Fork 13.6k
[mlir] Add sm_90a GEMM test 128x128x128 (F32 += F16 * F16) #69913
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
272 changes: 272 additions & 0 deletions
272
mlir/test/Integration/GPU/CUDA/sm90/gemm_f32_f16_f16_128x128x128.mlir
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
// RUN: mlir-opt %s \ | ||
// RUN: -test-lower-to-nvvm="cubin-chip=sm_90a cubin-features=+ptx80 opt-level=3" \ | ||
// RUN: | mlir-cpu-runner \ | ||
// RUN: --shared-libs=%mlir_cuda_runtime \ | ||
// RUN: --shared-libs=%mlir_runner_utils \ | ||
// RUN: --shared-libs=%mlir_c_runner_utils \ | ||
// RUN: --entry-point-result=void \ | ||
// RUN: | FileCheck %s | ||
|
||
// CHECK: Correct Results : | ||
// CHECK: 16384 | ||
// CHECK: Incorrect Results : | ||
// CHECK: 0 | ||
|
||
// This program performs 128x128x128 GEMM (F32 += F16 * F16) | ||
// | ||
// ## Sequential | ||
// for(128) | ||
// for(128) | ||
// for(128) | ||
// D += A * B | ||
// | ||
// ## Parallel 1 CTA with 1 Warpgroup with 2 pipelining stage | ||
// | ||
// cuda kernel() { | ||
// mbarriers.init[2] | ||
// for(i = 0;...2) { | ||
// tma.load shmem_buffer<i x...> | ||
// mbarrier.expect_tx group[i] | ||
// } | ||
// result = | ||
// for(i = 0;...2) { | ||
// pipe = i % 2 | ||
// mbarrier.wait [pipe] | ||
// lhs = shmem_buffer_lhs<pipe x 128 x 64> | ||
// rhs = shmem_buffer_rhs<pipe x 64 x 128> | ||
// yield nvgpu.warpgroup.mma (lhs, rhs) | ||
// --------------------------------------------------------------------- | ||
// Expanded : nvgpu.warpgroup.mma [128][128]+=[128][64]*[64][128] | ||
// wgmma.m64n128k16(A[0:64][0:16] * B[0:16][0:128]) | ||
// wgmma.m64n128k16(A[0:64][16:32] * B[16:32][0:128]) | ||
// wgmma.m64n128k16(A[0:64][32:48] * B[32:48][0:128]) | ||
// wgmma.m64n128k16(A[0:64][48:64] * B[48:64][0:128]) | ||
// wgmma.m64n128k16(A[64:128][0:16] * B[0:16][0:128]) | ||
// wgmma.m64n128k16(A[64:128][16:32] * B[16:32][0:128]) | ||
// wgmma.m64n128k16(A[64:128][32:48] * B[32:48][0:128]) | ||
// wgmma.m64n128k16(A[64:128][48:64] * B[48:64][0:128]) | ||
// --------------------------------------------------------------------- | ||
// } | ||
// nvgpu.store result -> shmem_buffer_result | ||
|
||
|
||
!barrierType = !nvgpu.mbarrier.group<memorySpace = #gpu.address_space<workgroup>, num_barriers = 2> | ||
!lhsTensorMap = !nvgpu.tensormap.descriptor<tensor = memref<128x64xf16, 3>, swizzle = swizzle_128b, l2promo=none, oob=zero, interleave=none> | ||
!rhsTensorMap = !nvgpu.tensormap.descriptor<tensor = memref<64x64xf16, 3>, swizzle = swizzle_128b, l2promo=none, oob=zero, interleave=none> | ||
|
||
func.func private @printMemrefF32(memref<*xf32>) | ||
|
||
memref.global "private" @dynamicShmem : memref<0xf16, 3> {alignment = 16 : i64} | ||
memref.global "private" @accShmem : memref<0xf32, 3> {alignment = 16 : i64} | ||
|
||
func.func @main() { | ||
// matrix A (128*64) * matrix B (64*128) * stages(2) | ||
// matrix A [128][64] * matrix B[64][128] * stages(2) | ||
%shmemSize = arith.constant 65536 : i32 | ||
%hc1 = arith.constant 1 : index | ||
%hc4096 = arith.constant 4096 : index | ||
%hc0 = arith.constant 0 : index | ||
%hc64 = arith.constant 64 : index | ||
%hc16 = arith.constant 16 : index | ||
%hc8 = arith.constant 8 : index | ||
%hc128 = arith.constant 128 : index | ||
%hc32 = arith.constant 32 : index | ||
%hc256 = arith.constant 256 : index | ||
%f0 = arith.constant 0.0 : f32 | ||
|
||
// Step 1. Allocate and Initilize LHS and RHS Matrices | ||
%matrixAHost = memref.alloc() : memref<128x128xf16> | ||
%matrixBHost = memref.alloc() : memref<128x128xf16> | ||
%matrixDHost = memref.alloc() : memref<128x128xf32> | ||
%matrixRefHost = memref.alloc() : memref<128x128xf32> | ||
scf.for %i = %hc0 to %hc128 step %hc1 { | ||
scf.for %j = %hc0 to %hc128 step %hc1 { | ||
%v0 = arith.muli %i, %hc128 : index // i * 128 | ||
%v00 = arith.addi %v0, %j : index // i * 128 + j | ||
%v01 = arith.divui %v00, %hc8 : index // (i * 128 + j) / 8 | ||
%v02 = arith.remui %v01, %hc16 : index // <<<<< mod 128 | ||
%v2 = arith.index_cast %v02 : index to i32 | ||
%vR = arith.sitofp %v2 : i32 to f16 | ||
memref.store %vR, %matrixBHost[%i, %j] : memref<128x128xf16> | ||
%b0 = arith.muli %j, %hc64 : index | ||
%b00 = arith.addi %b0, %i : index | ||
%b01 = arith.divui %b00, %hc8 : index | ||
%b02 = arith.remui %b01, %hc16 : index // <<<<< mod 128 | ||
%v1 = arith.index_cast %b02 : index to i32 | ||
%vL = arith.sitofp %v1 : i32 to f16 | ||
memref.store %vL, %matrixAHost[%j, %i] : memref<128x128xf16> | ||
memref.store %f0, %matrixDHost[%i, %j] : memref<128x128xf32> | ||
memref.store %f0, %matrixRefHost[%i, %j] : memref<128x128xf32> | ||
} | ||
} | ||
|
||
// Step 2. Allocate Device Memory for LHS and RHS Matrices and Copy H2D | ||
%token = gpu.wait async | ||
%matrixA:2 = gpu.alloc async [%token] () : memref<128x128xf16> | ||
%matrixB:2 = gpu.alloc async [%token] () : memref<128x128xf16> | ||
%matrixD:2 = gpu.alloc async [%token] () : memref<128x128xf32> | ||
%1 = gpu.memcpy async [%token] %matrixA, %matrixAHost : memref<128x128xf16>, memref<128x128xf16> | ||
%2 = gpu.memcpy async [%token] %matrixB, %matrixBHost : memref<128x128xf16>, memref<128x128xf16> | ||
%castA = memref.cast %matrixA : memref<128x128xf16> to memref<*xf16> | ||
%castB = memref.cast %matrixB : memref<128x128xf16> to memref<*xf16> | ||
|
||
// Step 3. Create TMA Descriptor | ||
%descA = nvgpu.tma.create.descriptor %castA box[%hc128, %hc64] : memref<*xf16> -> !lhsTensorMap | ||
%descB = nvgpu.tma.create.descriptor %castB box[%hc64, %hc64] : memref<*xf16> -> !rhsTensorMap | ||
|
||
// Step 4. Launch GPU Kernel | ||
gpu.launch blocks(%arg0, %arg1, %arg2) in (%arg6 = %hc1, %arg7 = %hc1, %arg8 = %hc1) | ||
threads(%arg3, %arg4, %arg5) in (%arg9 = %hc128, %arg10 = %hc1, %arg11 = %hc1) | ||
dynamic_shared_memory_size %shmemSize | ||
{ | ||
memref.assume_alignment %matrixD, 16 : memref<128x128xf32> | ||
|
||
%c256 = arith.constant 256 : index | ||
%c10000000 = arith.constant 10000000 : index | ||
%c32768 = arith.constant 32768 : index | ||
%c320 = arith.constant 320 : index | ||
%c192 = arith.constant 192 : index | ||
%c6 = arith.constant 6 : index | ||
%c5 = arith.constant 5 : index | ||
%c4 = arith.constant 4 : index | ||
%c3 = arith.constant 3 : index | ||
%c7 = arith.constant 7 : index | ||
%c64 = arith.constant 64 : index | ||
%c1 = arith.constant 1 : index | ||
%c2 = arith.constant 2 : index | ||
%c0 = arith.constant 0 : index | ||
%c128 = arith.constant 128 : index | ||
%c32 = arith.constant 32 : index | ||
%c16 = arith.constant 16 : index | ||
%c4096 = arith.constant 4096 : index | ||
%c8 = arith.constant 8 : index | ||
%txcount = arith.constant 32768 : index | ||
|
||
%tidx = gpu.thread_id x | ||
%dynamicMem = memref.get_global @dynamicShmem : memref<0xf16, 3> | ||
%lhsShmem = memref.reinterpret_cast %dynamicMem to offset: [0], sizes: [2, 128, 64], strides: [8192, 64, 1] : memref<0xf16, 3> to memref<2x128x64xf16, 3> | ||
%rhsShmem2 = memref.reinterpret_cast %dynamicMem to offset: [0], sizes: [4, 64, 128], strides: [8192,128,1] : memref<0xf16, 3> to memref<4x64x128xf16,3> | ||
%rhsShmem = memref.subview %rhsShmem2[2, 0, 0][2, 64, 128][1, 1, 1] : memref<4x64x128xf16,3> to memref<2x64x128xf16, strided<[8192, 128, 1], offset: 16384>, 3> | ||
|
||
// Step 1. [GPU] Create Async Transactional Barriers (mbarriers) | ||
%barrier = nvgpu.mbarrier.create -> !barrierType | ||
%cnd = arith.cmpi eq, %tidx, %c0 : index | ||
|
||
// Step 2. [GPU] Initialize mbarriers | ||
nvgpu.mbarrier.init %barrier[%c0], %c1 : !barrierType | ||
nvgpu.mbarrier.init %barrier[%c1], %c1 : !barrierType | ||
|
||
// Step 3. [GPU] Prefetch TMA Descriptors to L1 Cache | ||
nvgpu.tma.prefetch.descriptor %descA : !lhsTensorMap | ||
nvgpu.tma.prefetch.descriptor %descB : !rhsTensorMap | ||
|
||
// Step 4.1 [GPU] TMA Load Pipeline 1 | ||
scf.if %cnd { | ||
%pipe = arith.constant 0 : index | ||
%lhsSlice = memref.subview %lhsShmem[0, 0, 0][1, 128, 64][1, 1, 1] : memref<2x128x64xf16, 3> to memref<128x64xf16, 3> | ||
%rhsSlice = memref.subview %rhsShmem[0, 0, 0][1, 64, 128][1, 1, 1] : memref<2x64x128xf16, strided<[8192, 128, 1], offset: 16384>, 3> to memref<64x128xf16, strided<[128, 1], offset: 16384>, 3> | ||
%halfFirst = memref.subview %rhsSlice[0, 0][64, 64][1, 1] : memref<64x128xf16, strided<[128, 1], offset: 16384>, 3> to memref<64x64xf16, strided<[128, 1], offset: 16384>, 3> | ||
%halfSecond = memref.subview %rhsSlice[32, 0][64, 64][1, 1] : memref<64x128xf16, strided<[128, 1], offset: 16384>, 3> to memref<64x64xf16, strided<[128, 1], offset: 20480>, 3> | ||
nvgpu.mbarrier.arrive.expect_tx %barrier[%pipe], %txcount : !barrierType | ||
%dim = arith.muli %pipe, %c64 : index | ||
nvgpu.tma.async.load %descA[%dim, %c0], %barrier[%pipe] to %lhsSlice : !lhsTensorMap, !barrierType -> memref<128x64xf16, 3> | ||
nvgpu.tma.async.load %descB[%c0, %dim], %barrier[%pipe] to %halfFirst : !rhsTensorMap, !barrierType -> memref<64x64xf16, strided<[128, 1], offset: 16384>, 3> | ||
nvgpu.tma.async.load %descB[%c64, %dim], %barrier[%pipe] to %halfSecond : !rhsTensorMap, !barrierType -> memref<64x64xf16, strided<[128, 1], offset: 20480>, 3> | ||
} | ||
// Step 4.2 [GPU] TMA Load Pipeline 2 | ||
scf.if %cnd { | ||
%pipe = arith.constant 1 : index | ||
%lhsSlice = memref.subview %lhsShmem[1, 0, 0][1, 128, 64][1, 1, 1] : memref<2x128x64xf16, 3> to memref<128x64xf16, strided<[64, 1], offset: 8192>, 3> | ||
%rhsSlice = memref.subview %rhsShmem[1, 0, 0][1, 64, 128][1, 1, 1] : memref<2x64x128xf16, strided<[8192, 128, 1], offset: 16384>, 3> to memref<64x128xf16, strided<[128, 1], offset: 24576>, 3> | ||
%halfFirst = memref.subview %rhsSlice[0, 0][64, 64][1, 1] : memref<64x128xf16, strided<[128, 1], offset: 24576>, 3> to memref<64x64xf16, strided<[128, 1], offset: 24576>, 3> | ||
%halfSecond = memref.subview %rhsSlice[32, 0][64, 64][1, 1] : memref<64x128xf16, strided<[128, 1], offset: 24576>, 3> to memref<64x64xf16, strided<[128, 1], offset: 28672>, 3> | ||
nvgpu.mbarrier.arrive.expect_tx %barrier[%pipe], %txcount : !barrierType | ||
%dim = arith.muli %pipe, %c64 : index | ||
nvgpu.tma.async.load %descA[%dim, %c0], %barrier[%pipe] to %lhsSlice : !lhsTensorMap, !barrierType -> memref<128x64xf16, strided<[64, 1], offset: 8192>, 3> | ||
nvgpu.tma.async.load %descB[%c0, %dim], %barrier[%pipe] to %halfFirst : !rhsTensorMap, !barrierType -> memref<64x64xf16, strided<[128, 1], offset: 24576>, 3> | ||
nvgpu.tma.async.load %descB[%c64, %dim], %barrier[%pipe] to %halfSecond : !rhsTensorMap, !barrierType -> memref<64x64xf16, strided<[128, 1], offset: 28672>, 3> | ||
} | ||
|
||
// Step 5. [GPU] Initiliaze accumulator matrix | ||
%14 = nvgpu.warpgroup.mma.init.accumulator -> <fragmented = vector<128x128xf32>> | ||
|
||
// Step 6. [GPU] Main Loop Starts | ||
%15 = scf.for %i = %c0 to %c2 step %c1 iter_args(%mc = %14) | ||
-> (!nvgpu.warpgroup.accumulator<fragmented = vector<128x128xf32>>) | ||
{ | ||
%ticks = arith.constant 10000000 : index | ||
// TMA wait | ||
nvgpu.mbarrier.try_wait.parity %barrier[%i], %c0, %ticks : !barrierType | ||
%lhsSlice = memref.subview %lhsShmem [%i, 0, 0][1, 128, 64][1, 1, 1] : memref<2x128x64xf16, 3> to memref<128x64xf16, strided<[64, 1], offset: ?>, 3> | ||
%rhsSlice = memref.subview %rhsShmem [%i, 0, 0][1, 64, 128][1, 1, 1] : memref<2x64x128xf16, strided<[8192, 128, 1], offset: 16384>, 3> to memref<64x128xf16, strided<[128, 1], offset: ?>, 3> | ||
// Descriptor WGMMA | ||
%dA = nvgpu.warpgroup.generate.descriptor %lhsSlice, %descA : memref<128x64xf16, strided<[64, 1], offset: ?>, 3>, !lhsTensorMap -> !nvgpu.warpgroup.descriptor<tensor=memref<128x64xf16, 3>> | ||
%dB = nvgpu.warpgroup.generate.descriptor %rhsSlice, %descB : memref<64x128xf16, strided<[128, 1], offset: ?>, 3>, !rhsTensorMap -> !nvgpu.warpgroup.descriptor<tensor=memref<64x128xf16, 3>> | ||
// Perform WGMMA 128x128x64 | ||
%md = nvgpu.warpgroup.mma %dA, %dB, %mc {transposeB} : <tensor = memref<128x64xf16,3>>, <tensor = memref<64x128xf16,3>>, <fragmented = vector<128x128xf32>> -> <fragmented = vector<128x128xf32>> | ||
grypp marked this conversation as resolved.
Show resolved
Hide resolved
|
||
scf.yield %md : !nvgpu.warpgroup.accumulator<fragmented = vector<128x128xf32>> | ||
} | ||
|
||
// Step 7. Wait all to finish mma | ||
nvvm.wgmma.wait.group.sync.aligned 0 | ||
|
||
// Step 8. [GPU] Epilogue, store fragmented register to shared memory | ||
%accShmem = memref.get_global @accShmem : memref<0xf32, 3> | ||
%accShmemPtr = memref.reinterpret_cast %accShmem to offset: [0], sizes: [128, 128], strides: [128, 1] : memref<0xf32, 3> to memref<128x128xf32, 3> | ||
nvgpu.warpgroup.mma.store %15, %accShmemPtr : <fragmented = vector<128x128xf32>> to memref<128x128xf32, 3> | ||
grypp marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
// Step 9. [GPU] Epilogue, shared memory to global memory | ||
%17 = arith.divui %tidx, %c32 : index | ||
%18 = arith.remui %tidx, %c32 : index | ||
scf.for %arg12 = %17 to %c128 step %c4 { | ||
%19 = arith.muli %18, %c4 : index | ||
%20 = vector.load %accShmemPtr[%arg12, %19] : memref<128x128xf32, 3>, vector<4xf32> | ||
vector.store %20, %matrixD[%arg12, %19] : memref<128x128xf32>, vector<4xf32> | ||
} | ||
gpu.terminator | ||
} | ||
|
||
// Step 5. Copy D2H | ||
%5 = gpu.memcpy async [%token] %matrixDHost, %matrixD : memref<128x128xf32>, memref<128x128xf32> | ||
gpu.wait [%token] | ||
|
||
// Step 6. Compute on host | ||
linalg.matmul ins(%matrixAHost, %matrixBHost : memref<128x128xf16>, memref<128x128xf16>) outs(%matrixRefHost : memref<128x128xf32>) | ||
|
||
// Step 7. Verify | ||
%ic1 = arith.constant 1 : i32 | ||
%ic0 = arith.constant 0 : i32 | ||
%tolerance = arith.constant 0.00000001 : f32 | ||
%errorCount, %correctCount = | ||
scf.for %i = %hc0 to %hc128 step %hc1 iter_args(%ec1 = %ic0, %cc1 = %ic0) -> (i32,i32) { | ||
%ec2, %cc2 = | ||
scf.for %j = %hc0 to %hc128 step %hc1 iter_args(%ec2 = %ec1, %cc2 = %cc1) -> (i32,i32){ | ||
%v1 = memref.load %matrixRefHost[%i,%j] : memref<128x128xf32> | ||
%v2 = memref.load %matrixDHost[%i,%j] : memref<128x128xf32> | ||
%g1 = arith.subf %v1,%v2 : f32 | ||
%g2 = math.absf %g1: f32 | ||
%g3 = arith.cmpf ult, %tolerance, %g2 : f32 | ||
%ec3, %cc3 = scf.if %g3 -> (i32, i32) { | ||
%coor = arith.constant dense<-1> : vector<2xi32> | ||
%i32 = arith.index_cast %i : index to i32 | ||
%j32 = arith.index_cast %j : index to i32 | ||
%coord1 = vector.insert %i32, %coor[0] : i32 into vector<2xi32> | ||
%coord2 = vector.insert %j32, %coord1[1] : i32 into vector<2xi32> | ||
%ec3 = arith.addi %ec2, %ic1 : i32 | ||
scf.yield %ec3, %cc2 : i32, i32 | ||
} else { | ||
%cc3 = arith.addi %cc2, %ic1 : i32 | ||
scf.yield %ec2, %cc3 : i32, i32 | ||
} | ||
scf.yield %ec3, %cc3 : i32,i32 | ||
} | ||
scf.yield %ec2,%cc2 : i32,i32 | ||
} | ||
|
||
vector.print str "Correct Results :" | ||
vector.print %correctCount : i32 | ||
vector.print str "Incorrect Results :" | ||
vector.print %errorCount : i32 | ||
|
||
return | ||
} |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.