Skip to content

[mlir][linalg] Fix for invalid IR in eliminate_empty_tensors #73513

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,10 @@ LogicalResult linalg::linalgOpAnchoredEmptyTensorEliminationStep(
config.alwaysIncludeLeaves = false;
SetVector<Value> emptyTensors = state.findValueInReverseUseDefChain(
in->get(), /*condition=*/
[&](Value val) { return val.getDefiningOp<tensor::EmptyOp>(); },
[&](Value val) {
return val.getDefiningOp<tensor::EmptyOp>() &&
val.getType() == in->get().getType();
},
config);
if (emptyTensors.empty())
continue;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -42,3 +42,89 @@ module attributes {transform.with_named_sequence} {
transform.yield
}
}

// -----

#map = affine_map<(d0) -> (d0)>

// This test is intended to check that the produced IR does not contain any
// type errors from sharing empty tensor operations with different types.
// The verifiers are sufficient to lock down the intended behavior.

// CHECK-LABEL: func.func @collapse_shape_prevents_reuse(
func.func @collapse_shape_prevents_reuse(%fill_value: f32) -> tensor<56xf32>
{
%init0 = tensor.empty() : tensor<56xf32>
%init1 = tensor.empty() : tensor<56x1xf32>

%filled_tensor = linalg.fill
ins(%fill_value : f32)
outs(%init1 : tensor<56x1xf32>) -> tensor<56x1xf32>

// The collapse shape alters the tensor rank, so the %init1 tensor.empty cannot be
// pushed into the output of the linalg.generic.
%reshaped_tensor = tensor.collapse_shape %filled_tensor [[0, 1]]
: tensor<56x1xf32> into tensor<56xf32>

%bias = linalg.generic {
indexing_maps = [#map, #map],
iterator_types = ["parallel"]
} ins(%reshaped_tensor : tensor<56xf32>)
outs(%init0 : tensor<56xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<56xf32>

return %bias : tensor<56xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.eliminate_empty_tensors %0 : !transform.any_op
transform.yield
}
}

// -----

#map = affine_map<(d0, d1) -> (d0, d1)>

// This test is intended to check that the produced IR does not contain any
// type errors from sharing empty tensor operations with different types.
// The verifiers are sufficient to lock down the intended behavior.

// CHECK-LABEL: func.func @collapse_cast_prevents_reuse(
func.func @collapse_cast_prevents_reuse(%fill_value: f32) -> tensor<56x?xf32>
{
%c1 = arith.constant 1 : index
%init0 = tensor.empty(%c1) : tensor<56x?xf32>
%init1 = tensor.empty() : tensor<56x1xf32>

%filled_tensor = linalg.fill
ins(%fill_value : f32)
outs(%init1 : tensor<56x1xf32>) -> tensor<56x1xf32>

// The cast alters the number of dynamic dims, so the %init1 tensor.empty cannot be
// pushed into the output of the linalg.generic.
%cast = tensor.cast %filled_tensor : tensor<56x1xf32> to tensor<56x?xf32>

%bias = linalg.generic {
indexing_maps = [#map, #map],
iterator_types = ["parallel", "parallel"]
} ins(%cast : tensor<56x?xf32>)
outs(%init0 : tensor<56x?xf32>) {
^bb0(%in: f32, %out: f32):
linalg.yield %in : f32
} -> tensor<56x?xf32>

return %bias : tensor<56x?xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.eliminate_empty_tensors %0 : !transform.any_op
transform.yield
}
}