Skip to content

[mlir][complex] Prevent underflow in complex.abs #76316

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Jan 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 42 additions & 14 deletions mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -26,29 +26,57 @@ namespace mlir {
using namespace mlir;

namespace {
// The algorithm is listed in https://dl.acm.org/doi/pdf/10.1145/363717.363780.
struct AbsOpConversion : public OpConversionPattern<complex::AbsOp> {
using OpConversionPattern<complex::AbsOp>::OpConversionPattern;

LogicalResult
matchAndRewrite(complex::AbsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = op.getType();
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);

arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();

Value real =
rewriter.create<complex::ReOp>(loc, type, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, type, adaptor.getComplex());
Value realSqr =
rewriter.create<arith::MulFOp>(loc, real, real, fmf.getValue());
Value imagSqr =
rewriter.create<arith::MulFOp>(loc, imag, imag, fmf.getValue());
Value sqNorm =
rewriter.create<arith::AddFOp>(loc, realSqr, imagSqr, fmf.getValue());

rewriter.replaceOpWithNewOp<math::SqrtOp>(op, sqNorm);
Type elementType = op.getType();
Value arg = adaptor.getComplex();

Value zero =
b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
Value one = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 1.0));

Value real = b.create<complex::ReOp>(elementType, arg);
Value imag = b.create<complex::ImOp>(elementType, arg);

Value realIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero);
Value imagIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero);

// Real > Imag
Value imagDivReal = b.create<arith::DivFOp>(imag, real, fmf.getValue());
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm wondering what's going to happen here if real is zero. Should the computation be wrapped in scf.if instead of using an arith.select below?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think it should be no problem as long as the realIsZero is being true. The decision operator does not seem to be evaluated. The case with real is zero is returning expected value.

https://github.com/llvm/llvm-project/pull/76316/files#diff-01fda3fd3b20157ca6cbd39d5c8203a33814516e46c22a544d65dddb3008644aR333

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, the value is not used afterwards but I'm wondering if executing a division by zero could cause a crash (maybe only on some platforms). Maybe ask on Discourse before merging. If you don't get an answer, I'd say just merge as is and if it causes issues in the future it will be a simple fix (wrapping the computation in scf.if instead of using arith.select).

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks. That makes sense. I posted the question here.

https://discourse.llvm.org/t/devision-by-zero-semantics-in-arith-divf/76514

Value imagSq =
b.create<arith::MulFOp>(imagDivReal, imagDivReal, fmf.getValue());
Value imagSqPlusOne = b.create<arith::AddFOp>(imagSq, one, fmf.getValue());
Value imagSqrt = b.create<math::SqrtOp>(imagSqPlusOne, fmf.getValue());
Value absImag = b.create<arith::MulFOp>(imagSqrt, real, fmf.getValue());

// Real <= Imag
Value realDivImag = b.create<arith::DivFOp>(real, imag, fmf.getValue());
Value realSq =
b.create<arith::MulFOp>(realDivImag, realDivImag, fmf.getValue());
Value realSqPlusOne = b.create<arith::AddFOp>(realSq, one, fmf.getValue());
Value realSqrt = b.create<math::SqrtOp>(realSqPlusOne, fmf.getValue());
Value absReal = b.create<arith::MulFOp>(realSqrt, imag, fmf.getValue());

rewriter.replaceOpWithNewOp<arith::SelectOp>(
op, realIsZero, imag,
b.create<arith::SelectOp>(
imagIsZero, real,
b.create<arith::SelectOp>(
b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, real, imag),
absImag, absReal)));

return success();
}
};
Expand Down
115 changes: 93 additions & 22 deletions mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -7,13 +7,28 @@ func.func @complex_abs(%arg: complex<f32>) -> f32 {
%abs = complex.abs %arg: complex<f32>
return %abs : f32
}

// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK-DAG: %[[REAL_SQ:.*]] = arith.mulf %[[REAL]], %[[REAL]] : f32
// CHECK-DAG: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] : f32
// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[REAL_SQ]], %[[IMAG_SQ]] : f32
// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: return %[[NORM]] : f32
// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG]], %[[REAL]] : f32
// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] : f32
// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] : f32
// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL]] : f32
// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] : f32
// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] : f32
// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG]] : f32
// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL]], %[[ABS1]] : f32
// CHECK: %[[ABS3:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG]], %[[ABS2]] : f32
// CHECK: return %[[ABS3]] : f32

// -----

Expand Down Expand Up @@ -241,12 +256,26 @@ func.func @complex_log(%arg: complex<f32>) -> complex<f32> {
%log = complex.log %arg: complex<f32>
return %log : complex<f32>
}
// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK: %[[SQR_REAL:.*]] = arith.mulf %[[REAL]], %[[REAL]] : f32
// CHECK: %[[SQR_IMAG:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] : f32
// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[SQR_REAL]], %[[SQR_IMAG]] : f32
// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG]], %[[REAL]] : f32
// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] : f32
// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] : f32
// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL]] : f32
// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] : f32
// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] : f32
// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG]] : f32
// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL]], %[[ABS1]] : f32
// CHECK: %[[NORM:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG]], %[[ABS2]] : f32
// CHECK: %[[RESULT_REAL:.*]] = math.log %[[NORM]] : f32
// CHECK: %[[REAL2:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG2:.*]] = complex.im %[[ARG]] : complex<f32>
Expand Down Expand Up @@ -469,12 +498,26 @@ func.func @complex_sign(%arg: complex<f32>) -> complex<f32> {
// CHECK: %[[REAL_IS_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IMAG_IS_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
// CHECK: %[[IS_ZERO:.*]] = arith.andi %[[REAL_IS_ZERO]], %[[IMAG_IS_ZERO]] : i1
// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL2:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG2:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK: %[[SQR_REAL:.*]] = arith.mulf %[[REAL2]], %[[REAL2]] : f32
// CHECK: %[[SQR_IMAG:.*]] = arith.mulf %[[IMAG2]], %[[IMAG2]] : f32
// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[SQR_REAL]], %[[SQR_IMAG]] : f32
// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL2]], %[[ZERO]] : f32
// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG2]], %[[ZERO]] : f32
// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG2]], %[[REAL2]] : f32
// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] : f32
// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] : f32
// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL2]] : f32
// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL2]], %[[IMAG2]] : f32
// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] : f32
// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] : f32
// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG2]] : f32
// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL2]], %[[IMAG2]] : f32
// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL2]], %[[ABS1]] : f32
// CHECK: %[[NORM:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG2]], %[[ABS2]] : f32
// CHECK: %[[REAL_SIGN:.*]] = arith.divf %[[REAL]], %[[NORM]] : f32
// CHECK: %[[IMAG_SIGN:.*]] = arith.divf %[[IMAG]], %[[NORM]] : f32
// CHECK: %[[SIGN:.*]] = complex.create %[[REAL_SIGN]], %[[IMAG_SIGN]] : complex<f32>
Expand Down Expand Up @@ -716,13 +759,27 @@ func.func @complex_abs_with_fmf(%arg: complex<f32>) -> f32 {
%abs = complex.abs %arg fastmath<nnan,contract> : complex<f32>
return %abs : f32
}
// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK-DAG: %[[REAL_SQ:.*]] = arith.mulf %[[REAL]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK-DAG: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[REAL_SQ]], %[[IMAG_SQ]] fastmath<nnan,contract> : f32
// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: return %[[NORM]] : f32
// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL]], %[[ABS1]] : f32
// CHECK: %[[ABS3:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG]], %[[ABS2]] : f32
// CHECK: return %[[ABS3]] : f32

// -----

Expand Down Expand Up @@ -807,12 +864,26 @@ func.func @complex_log_with_fmf(%arg: complex<f32>) -> complex<f32> {
%log = complex.log %arg fastmath<nnan,contract> : complex<f32>
return %log : complex<f32>
}
// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK: %[[SQR_REAL:.*]] = arith.mulf %[[REAL]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[SQR_IMAG:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[SQR_REAL]], %[[SQR_IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL]], %[[ABS1]] : f32
// CHECK: %[[NORM:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG]], %[[ABS2]] : f32
// CHECK: %[[RESULT_REAL:.*]] = math.log %[[NORM]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL2:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG2:.*]] = complex.im %[[ARG]] : complex<f32>
Expand Down
25 changes: 21 additions & 4 deletions mlir/test/Conversion/ComplexToStandard/full-conversion.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -6,12 +6,29 @@ func.func @complex_abs(%arg: complex<f32>) -> f32 {
%abs = complex.abs %arg: complex<f32>
return %abs : f32
}
// CHECK: %[[ZERO:.*]] = llvm.mlir.constant(0.000000e+00 : f32) : f32
// CHECK: %[[ONE:.*]] = llvm.mlir.constant(1.000000e+00 : f32) : f32
// CHECK: %[[REAL:.*]] = llvm.extractvalue %[[ARG]][0] : ![[C_TY]]
// CHECK: %[[IMAG:.*]] = llvm.extractvalue %[[ARG]][1] : ![[C_TY]]
// CHECK-DAG: %[[REAL_SQ:.*]] = llvm.fmul %[[REAL]], %[[REAL]] : f32
// CHECK-DAG: %[[IMAG_SQ:.*]] = llvm.fmul %[[IMAG]], %[[IMAG]] : f32
// CHECK: %[[SQ_NORM:.*]] = llvm.fadd %[[REAL_SQ]], %[[IMAG_SQ]] : f32
// CHECK: %[[NORM:.*]] = llvm.intr.sqrt(%[[SQ_NORM]]) : (f32) -> f32
// CHECK: %[[REAL_IS_ZERO:.*]] = llvm.fcmp "oeq" %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IMAG_IS_ZERO:.*]] = llvm.fcmp "oeq" %[[IMAG]], %[[ZERO]] : f32

// CHECK: %[[IMAG_DIV_REAL:.*]] = llvm.fdiv %[[IMAG]], %[[REAL]] : f32
// CHECK: %[[IMAG_SQ:.*]] = llvm.fmul %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = llvm.fadd %[[IMAG_SQ]], %[[ONE]] : f32
// CHECK: %[[IMAG_SQRT:.*]] = llvm.intr.sqrt(%[[IMAG_SQ_PLUS_ONE]]) : (f32) -> f32
// CHECK: %[[ABS_IMAG:.*]] = llvm.fmul %[[IMAG_SQRT]], %[[REAL]] : f32

// CHECK: %[[REAL_DIV_IMAG:.*]] = llvm.fdiv %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[REAL_SQ:.*]] = llvm.fmul %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = llvm.fadd %[[REAL_SQ]], %[[ONE]] : f32
// CHECK: %[[REAL_SQRT:.*]] = llvm.intr.sqrt(%[[REAL_SQ_PLUS_ONE]]) : (f32) -> f32
// CHECK: %[[ABS_REAL:.*]] = llvm.fmul %[[REAL_SQRT]], %[[IMAG]] : f32

// CHECK: %[[REAL_GT_IMAG:.*]] = llvm.fcmp "ogt" %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[ABS1:.*]] = llvm.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : i1, f32
// CHECK: %[[ABS2:.*]] = llvm.select %[[IMAG_IS_ZERO]], %[[REAL]], %[[ABS1]] : i1, f32
// CHECK: %[[NORM:.*]] = llvm.select %[[REAL_IS_ZERO]], %[[IMAG]], %[[ABS2]] : i1, f32
// CHECK: llvm.return %[[NORM]] : f32

// CHECK-LABEL: llvm.func @complex_eq
Expand Down
44 changes: 44 additions & 0 deletions mlir/test/Integration/Dialect/Complex/CPU/correctness.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,27 @@ func.func @angle(%arg: complex<f32>) -> f32 {
func.return %angle : f32
}

func.func @test_element_f64(%input: tensor<?xcomplex<f64>>,
%func: (complex<f64>) -> f64) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%size = tensor.dim %input, %c0: tensor<?xcomplex<f64>>

scf.for %i = %c0 to %size step %c1 {
%elem = tensor.extract %input[%i]: tensor<?xcomplex<f64>>

%val = func.call_indirect %func(%elem) : (complex<f64>) -> f64
vector.print %val : f64
scf.yield
}
func.return
}

func.func @abs(%arg: complex<f64>) -> f64 {
%abs = complex.abs %arg : complex<f64>
func.return %abs : f64
}

func.func @entry() {
// complex.sqrt test
%sqrt_test = arith.constant dense<[
Expand Down Expand Up @@ -300,5 +321,28 @@ func.func @entry() {
call @test_element(%angle_test_cast, %angle_func)
: (tensor<?xcomplex<f32>>, (complex<f32>) -> f32) -> ()

// complex.abs test
%abs_test = arith.constant dense<[
(1.0, 1.0),
// CHECK: 1.414
(1.0e300, 1.0e300),
// CHECK-NEXT: 1.41421e+300
(1.0e-300, 1.0e-300),
// CHECK-NEXT: 1.41421e-300
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The returned values are inf and 0 without this change.

(5.0, 0.0),
// CHECK-NEXT: 5
(0.0, 6.0),
// CHECK-NEXT: 6
(7.0, 8.0)
// CHECK-NEXT: 10.6301
]> : tensor<6xcomplex<f64>>
%abs_test_cast = tensor.cast %abs_test
: tensor<6xcomplex<f64>> to tensor<?xcomplex<f64>>

%abs_func = func.constant @abs : (complex<f64>) -> f64

call @test_element_f64(%abs_test_cast, %abs_func)
: (tensor<?xcomplex<f64>>, (complex<f64>) -> f64) -> ()

func.return
}