Skip to content

[mlir][complex] Prevent underflow in complex.abs (#79786) #81092

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Feb 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 44 additions & 14 deletions mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -26,29 +26,59 @@ namespace mlir {
using namespace mlir;

namespace {
// The algorithm is listed in https://dl.acm.org/doi/pdf/10.1145/363717.363780.
struct AbsOpConversion : public OpConversionPattern<complex::AbsOp> {
using OpConversionPattern<complex::AbsOp>::OpConversionPattern;

LogicalResult
matchAndRewrite(complex::AbsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto type = op.getType();
mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);

arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();

Value real =
rewriter.create<complex::ReOp>(loc, type, adaptor.getComplex());
Value imag =
rewriter.create<complex::ImOp>(loc, type, adaptor.getComplex());
Value realSqr =
rewriter.create<arith::MulFOp>(loc, real, real, fmf.getValue());
Value imagSqr =
rewriter.create<arith::MulFOp>(loc, imag, imag, fmf.getValue());
Value sqNorm =
rewriter.create<arith::AddFOp>(loc, realSqr, imagSqr, fmf.getValue());

rewriter.replaceOpWithNewOp<math::SqrtOp>(op, sqNorm);
Type elementType = op.getType();
Value arg = adaptor.getComplex();

Value zero =
b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
Value one = b.create<arith::ConstantOp>(elementType,
b.getFloatAttr(elementType, 1.0));

Value real = b.create<complex::ReOp>(elementType, arg);
Value imag = b.create<complex::ImOp>(elementType, arg);

Value realIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero);
Value imagIsZero =
b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero);

// Real > Imag
Value imagDivReal = b.create<arith::DivFOp>(imag, real, fmf.getValue());
Value imagSq =
b.create<arith::MulFOp>(imagDivReal, imagDivReal, fmf.getValue());
Value imagSqPlusOne = b.create<arith::AddFOp>(imagSq, one, fmf.getValue());
Value imagSqrt = b.create<math::SqrtOp>(imagSqPlusOne, fmf.getValue());
Value realAbs = b.create<math::AbsFOp>(real, fmf.getValue());
Value absImag = b.create<arith::MulFOp>(imagSqrt, realAbs, fmf.getValue());

// Real <= Imag
Value realDivImag = b.create<arith::DivFOp>(real, imag, fmf.getValue());
Value realSq =
b.create<arith::MulFOp>(realDivImag, realDivImag, fmf.getValue());
Value realSqPlusOne = b.create<arith::AddFOp>(realSq, one, fmf.getValue());
Value realSqrt = b.create<math::SqrtOp>(realSqPlusOne, fmf.getValue());
Value imagAbs = b.create<math::AbsFOp>(imag, fmf.getValue());
Value absReal = b.create<arith::MulFOp>(realSqrt, imagAbs, fmf.getValue());

rewriter.replaceOpWithNewOp<arith::SelectOp>(
op, realIsZero, imagAbs,
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Use imagAbs if real is zero.

b.create<arith::SelectOp>(
imagIsZero, realAbs,
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Use realAbs if imag is zero.

b.create<arith::SelectOp>(
b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, real, imag),
absImag, absReal)));

return success();
}
};
Expand Down
125 changes: 103 additions & 22 deletions mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -7,13 +7,30 @@ func.func @complex_abs(%arg: complex<f32>) -> f32 {
%abs = complex.abs %arg: complex<f32>
return %abs : f32
}

// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK-DAG: %[[REAL_SQ:.*]] = arith.mulf %[[REAL]], %[[REAL]] : f32
// CHECK-DAG: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] : f32
// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[REAL_SQ]], %[[IMAG_SQ]] : f32
// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: return %[[NORM]] : f32
// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG]], %[[REAL]] : f32
// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] : f32
// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] : f32
// CHECK: %[[REAL_ABS:.*]] = math.absf %[[REAL]] : f32
// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL_ABS]] : f32
// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] : f32
// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] : f32
// CHECK: %[[IMAG_ABS:.*]] = math.absf %[[IMAG]] : f32
// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG_ABS]] : f32
// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL_ABS]], %[[ABS1]] : f32
// CHECK: %[[ABS3:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG_ABS]], %[[ABS2]] : f32
// CHECK: return %[[ABS3]] : f32

// -----

Expand Down Expand Up @@ -241,12 +258,28 @@ func.func @complex_log(%arg: complex<f32>) -> complex<f32> {
%log = complex.log %arg: complex<f32>
return %log : complex<f32>
}
// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK: %[[SQR_REAL:.*]] = arith.mulf %[[REAL]], %[[REAL]] : f32
// CHECK: %[[SQR_IMAG:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] : f32
// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[SQR_REAL]], %[[SQR_IMAG]] : f32
// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG]], %[[REAL]] : f32
// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] : f32
// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] : f32
// CHECK: %[[REAL_ABS:.*]] = math.absf %[[REAL]] : f32
// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL_ABS]] : f32
// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] : f32
// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] : f32
// CHECK: %[[IMAG_ABS:.*]] = math.absf %[[IMAG]] : f32
// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG_ABS]] : f32
// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL_ABS]], %[[ABS1]] : f32
// CHECK: %[[NORM:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG_ABS]], %[[ABS2]] : f32
// CHECK: %[[RESULT_REAL:.*]] = math.log %[[NORM]] : f32
// CHECK: %[[REAL2:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG2:.*]] = complex.im %[[ARG]] : complex<f32>
Expand Down Expand Up @@ -469,12 +502,28 @@ func.func @complex_sign(%arg: complex<f32>) -> complex<f32> {
// CHECK: %[[REAL_IS_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IMAG_IS_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
// CHECK: %[[IS_ZERO:.*]] = arith.andi %[[REAL_IS_ZERO]], %[[IMAG_IS_ZERO]] : i1
// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL2:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG2:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK: %[[SQR_REAL:.*]] = arith.mulf %[[REAL2]], %[[REAL2]] : f32
// CHECK: %[[SQR_IMAG:.*]] = arith.mulf %[[IMAG2]], %[[IMAG2]] : f32
// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[SQR_REAL]], %[[SQR_IMAG]] : f32
// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL2]], %[[ZERO]] : f32
// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG2]], %[[ZERO]] : f32
// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG2]], %[[REAL2]] : f32
// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] : f32
// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] : f32
// CHECK: %[[REAL_ABS:.*]] = math.absf %[[REAL2]] : f32
// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL_ABS]] : f32
// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL2]], %[[IMAG2]] : f32
// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] : f32
// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] : f32
// CHECK: %[[IMAG_ABS:.*]] = math.absf %[[IMAG2]] : f32
// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG_ABS]] : f32
// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL2]], %[[IMAG2]] : f32
// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL_ABS]], %[[ABS1]] : f32
// CHECK: %[[NORM:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG_ABS]], %[[ABS2]] : f32
// CHECK: %[[REAL_SIGN:.*]] = arith.divf %[[REAL]], %[[NORM]] : f32
// CHECK: %[[IMAG_SIGN:.*]] = arith.divf %[[IMAG]], %[[NORM]] : f32
// CHECK: %[[SIGN:.*]] = complex.create %[[REAL_SIGN]], %[[IMAG_SIGN]] : complex<f32>
Expand Down Expand Up @@ -716,13 +765,29 @@ func.func @complex_abs_with_fmf(%arg: complex<f32>) -> f32 {
%abs = complex.abs %arg fastmath<nnan,contract> : complex<f32>
return %abs : f32
}
// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK-DAG: %[[REAL_SQ:.*]] = arith.mulf %[[REAL]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK-DAG: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[REAL_SQ]], %[[IMAG_SQ]] fastmath<nnan,contract> : f32
// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: return %[[NORM]] : f32
// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_ABS:.*]] = math.absf %[[REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL_ABS]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_ABS:.*]] = math.absf %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG_ABS]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL_ABS]], %[[ABS1]] : f32
// CHECK: %[[ABS3:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG_ABS]], %[[ABS2]] : f32
// CHECK: return %[[ABS3]] : f32

// -----

Expand Down Expand Up @@ -807,12 +872,28 @@ func.func @complex_log_with_fmf(%arg: complex<f32>) -> complex<f32> {
%log = complex.log %arg fastmath<nnan,contract> : complex<f32>
return %log : complex<f32>
}
// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
// CHECK: %[[SQR_REAL:.*]] = arith.mulf %[[REAL]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[SQR_IMAG:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[SQR_REAL]], %[[SQR_IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG]], %[[REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_ABS:.*]] = math.absf %[[REAL]] fastmath<nnan,contract> : f32
// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL_ABS]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL]], %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] fastmath<nnan,contract> : f32
// CHECK: %[[IMAG_ABS:.*]] = math.absf %[[IMAG]] fastmath<nnan,contract> : f32
// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG_ABS]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL_ABS]], %[[ABS1]] : f32
// CHECK: %[[NORM:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG_ABS]], %[[ABS2]] : f32
// CHECK: %[[RESULT_REAL:.*]] = math.log %[[NORM]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL2:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG2:.*]] = complex.im %[[ARG]] : complex<f32>
Expand Down
27 changes: 23 additions & 4 deletions mlir/test/Conversion/ComplexToStandard/full-conversion.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -6,12 +6,31 @@ func.func @complex_abs(%arg: complex<f32>) -> f32 {
%abs = complex.abs %arg: complex<f32>
return %abs : f32
}
// CHECK: %[[ZERO:.*]] = llvm.mlir.constant(0.000000e+00 : f32) : f32
// CHECK: %[[ONE:.*]] = llvm.mlir.constant(1.000000e+00 : f32) : f32
// CHECK: %[[REAL:.*]] = llvm.extractvalue %[[ARG]][0] : ![[C_TY]]
// CHECK: %[[IMAG:.*]] = llvm.extractvalue %[[ARG]][1] : ![[C_TY]]
// CHECK-DAG: %[[REAL_SQ:.*]] = llvm.fmul %[[REAL]], %[[REAL]] : f32
// CHECK-DAG: %[[IMAG_SQ:.*]] = llvm.fmul %[[IMAG]], %[[IMAG]] : f32
// CHECK: %[[SQ_NORM:.*]] = llvm.fadd %[[REAL_SQ]], %[[IMAG_SQ]] : f32
// CHECK: %[[NORM:.*]] = llvm.intr.sqrt(%[[SQ_NORM]]) : (f32) -> f32
// CHECK: %[[REAL_IS_ZERO:.*]] = llvm.fcmp "oeq" %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IMAG_IS_ZERO:.*]] = llvm.fcmp "oeq" %[[IMAG]], %[[ZERO]] : f32

// CHECK: %[[IMAG_DIV_REAL:.*]] = llvm.fdiv %[[IMAG]], %[[REAL]] : f32
// CHECK: %[[IMAG_SQ:.*]] = llvm.fmul %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] : f32
// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = llvm.fadd %[[IMAG_SQ]], %[[ONE]] : f32
// CHECK: %[[IMAG_SQRT:.*]] = llvm.intr.sqrt(%[[IMAG_SQ_PLUS_ONE]]) : (f32) -> f32
// CHECK: %[[REAL_ABS:.*]] = llvm.intr.fabs(%[[REAL]]) : (f32) -> f32
// CHECK: %[[ABS_IMAG:.*]] = llvm.fmul %[[IMAG_SQRT]], %[[REAL_ABS]] : f32

// CHECK: %[[REAL_DIV_IMAG:.*]] = llvm.fdiv %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[REAL_SQ:.*]] = llvm.fmul %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] : f32
// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = llvm.fadd %[[REAL_SQ]], %[[ONE]] : f32
// CHECK: %[[REAL_SQRT:.*]] = llvm.intr.sqrt(%[[REAL_SQ_PLUS_ONE]]) : (f32) -> f32
// CHECK: %[[IMAG_ABS:.*]] = llvm.intr.fabs(%[[IMAG]]) : (f32) -> f32
// CHECK: %[[ABS_REAL:.*]] = llvm.fmul %[[REAL_SQRT]], %[[IMAG_ABS]] : f32

// CHECK: %[[REAL_GT_IMAG:.*]] = llvm.fcmp "ogt" %[[REAL]], %[[IMAG]] : f32
// CHECK: %[[ABS1:.*]] = llvm.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : i1, f32
// CHECK: %[[ABS2:.*]] = llvm.select %[[IMAG_IS_ZERO]], %[[REAL_ABS]], %[[ABS1]] : i1, f32
// CHECK: %[[NORM:.*]] = llvm.select %[[REAL_IS_ZERO]], %[[IMAG_ABS]], %[[ABS2]] : i1, f32
// CHECK: llvm.return %[[NORM]] : f32

// CHECK-LABEL: llvm.func @complex_eq
Expand Down
54 changes: 54 additions & 0 deletions mlir/test/Integration/Dialect/Complex/CPU/correctness.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,27 @@ func.func @angle(%arg: complex<f32>) -> f32 {
func.return %angle : f32
}

func.func @test_element_f64(%input: tensor<?xcomplex<f64>>,
%func: (complex<f64>) -> f64) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%size = tensor.dim %input, %c0: tensor<?xcomplex<f64>>

scf.for %i = %c0 to %size step %c1 {
%elem = tensor.extract %input[%i]: tensor<?xcomplex<f64>>

%val = func.call_indirect %func(%elem) : (complex<f64>) -> f64
vector.print %val : f64
scf.yield
}
func.return
}

func.func @abs(%arg: complex<f64>) -> f64 {
%abs = complex.abs %arg : complex<f64>
func.return %abs : f64
}

func.func @entry() {
// complex.sqrt test
%sqrt_test = arith.constant dense<[
Expand Down Expand Up @@ -300,5 +321,38 @@ func.func @entry() {
call @test_element(%angle_test_cast, %angle_func)
: (tensor<?xcomplex<f32>>, (complex<f32>) -> f32) -> ()

// complex.abs test
%abs_test = arith.constant dense<[
(1.0, 1.0),
// CHECK: 1.414
(1.0e300, 1.0e300),
// CHECK-NEXT: 1.41421e+300
(1.0e-300, 1.0e-300),
// CHECK-NEXT: 1.41421e-300
(5.0, 0.0),
// CHECK-NEXT: 5
(0.0, 6.0),
// CHECK-NEXT: 6
(7.0, 8.0),
// CHECK-NEXT: 10.6301
(-1.0, -1.0),
// CHECK-NEXT: 1.414
(-1.0e300, -1.0e300),
// CHECK-NEXT: 1.41421e+300
(-1.0, 0.0),
// CHECK-NOT: -1
// CHECK-NEXT: 1
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add test case the imag part is zero.

(0.0, -1.0)
// CHECK-NOT: -1
// CHECK-NEXT: 1
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add test case where the real is zero.

]> : tensor<10xcomplex<f64>>
%abs_test_cast = tensor.cast %abs_test
: tensor<10xcomplex<f64>> to tensor<?xcomplex<f64>>

%abs_func = func.constant @abs : (complex<f64>) -> f64

call @test_element_f64(%abs_test_cast, %abs_func)
: (tensor<?xcomplex<f64>>, (complex<f64>) -> f64) -> ()

func.return
}