-
Notifications
You must be signed in to change notification settings - Fork 13.6k
[mlir][vector] Add support for linearizing Extract, ExtractStridedSlice, Shuffle VectorOps in VectorLinearize #88204
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 19 commits
dc63b10
24a0545
1de7dc4
de748c0
962243c
e20be00
ded7ae0
0d9406d
e807c7a
186001a
92374a2
c45c507
1ac90fc
0b96134
7046090
780896e
ec36971
f282393
32f39da
e486a72
9d908c8
5bbf22c
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
|
@@ -13,9 +13,16 @@ | |||||
#include "mlir/Dialect/Arith/IR/Arith.h" | ||||||
#include "mlir/Dialect/Vector/IR/VectorOps.h" | ||||||
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h" | ||||||
#include "mlir/IR/Attributes.h" | ||||||
#include "mlir/IR/BuiltinAttributes.h" | ||||||
#include "mlir/IR/Operation.h" | ||||||
#include "mlir/IR/PatternMatch.h" | ||||||
#include "mlir/IR/TypeUtilities.h" | ||||||
#include "mlir/Support/LogicalResult.h" | ||||||
#include "mlir/Transforms/DialectConversion.h" | ||||||
#include "llvm/ADT/ArrayRef.h" | ||||||
#include <cstdint> | ||||||
#include <numeric> | ||||||
|
||||||
using namespace mlir; | ||||||
|
||||||
|
@@ -103,6 +110,252 @@ struct LinearizeVectorizable final | |||||
return success(); | ||||||
} | ||||||
|
||||||
private: | ||||||
unsigned targetVectorBitWidth; | ||||||
}; | ||||||
|
||||||
/// This pattern converts the ExtractStridedSliceOp into a ShuffleOp that works | ||||||
/// on a linearized vector. | ||||||
/// Following, | ||||||
/// vector.extract_strided_slice %source | ||||||
/// { offsets = [..], strides = [..], sizes = [..] } | ||||||
/// is converted to : | ||||||
/// %source_1d = vector.shape_cast %source | ||||||
/// %out_1d = vector.shuffle %source_1d, %source_1d [ shuffle_indices_1d ] | ||||||
/// %out_nd = vector.shape_cast %out_1d | ||||||
/// `shuffle_indices_1d` is computed using the offsets and sizes of the | ||||||
/// extraction. | ||||||
struct LinearizeVectorExtractStridedSlice final | ||||||
: public mlir::OpConversionPattern<mlir::vector::ExtractStridedSliceOp> { | ||||||
using OpConversionPattern::OpConversionPattern; | ||||||
LinearizeVectorExtractStridedSlice( | ||||||
const TypeConverter &typeConverter, MLIRContext *context, | ||||||
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(), | ||||||
PatternBenefit benefit = 1) | ||||||
: OpConversionPattern(typeConverter, context, benefit), | ||||||
targetVectorBitWidth(targetVectBitWidth) {} | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Thanks for adding support for the target vector bitwidth! |
||||||
|
||||||
LogicalResult | ||||||
matchAndRewrite(vector::ExtractStridedSliceOp extractOp, OpAdaptor adaptor, | ||||||
ConversionPatternRewriter &rewriter) const override { | ||||||
Type dstType = getTypeConverter()->convertType(extractOp.getType()); | ||||||
assert(!(extractOp.getVector().getType().isScalable() || | ||||||
dstType.cast<VectorType>().isScalable()) && | ||||||
"scalable vectors are not supported."); | ||||||
if (!isLessThanTargetBitWidth(extractOp, targetVectorBitWidth)) | ||||||
return rewriter.notifyMatchFailure( | ||||||
extractOp, "Can't flatten since targetBitWidth <= OpSize"); | ||||||
banach-space marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
|
||||||
ArrayAttr offsets = extractOp.getOffsets(); | ||||||
ArrayAttr sizes = extractOp.getSizes(); | ||||||
ArrayAttr strides = extractOp.getStrides(); | ||||||
if (!isConstantIntValue(strides[0], 1)) | ||||||
return rewriter.notifyMatchFailure( | ||||||
extractOp, "Strided slice with stride != 1 is not supported."); | ||||||
Value srcVector = adaptor.getVector(); | ||||||
// If kD offsets are specified for nd source vector (n > k), the granularity | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
// of the extraction is greater than 1. In this case last (n-k) dimensions | ||||||
// form the extraction granularity. | ||||||
// Example : | ||||||
// vector.extract_strided_slice %src { | ||||||
// offsets = [0, 0], sizes = [2, 2], strides = [1, 1]} : | ||||||
// vector<4x8x8xf32> to vector<2x2x8xf32> | ||||||
// Here, extraction granularity is 8. | ||||||
int64_t extractGranularitySize = 1; | ||||||
int64_t n = extractOp.getSourceVectorType().getRank(); | ||||||
int64_t k = (int64_t)offsets.size(); | ||||||
if (n > k) { | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is this There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. addressed above. n > k is true for the following example.
In this case, only first 2 dims are extracted using the offsets, sizes etc. last dim is extracted in full. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Right, so there are 2 cases:
right? I think that you can get rid of int64_t outRank = (int64_t)offsets.size();
int64_t k = outRank;
while (k < n) {
extractGranularitySize *=
extractOp.getSourceVectorType().getShape()[outRank + (n-k)];
++k;
} This way there's only one case. Also, I'd avoid variable names like |
||||||
for (unsigned i = 0; i < n - k; ++i) { | ||||||
extractGranularitySize *= | ||||||
extractOp.getSourceVectorType().getShape()[i + k]; | ||||||
} | ||||||
} | ||||||
// Get total number of extracted slices. | ||||||
int64_t nExtractedSlices = 1; | ||||||
for (Attribute size : sizes) { | ||||||
nExtractedSlices *= size.cast<IntegerAttr>().getInt(); | ||||||
} | ||||||
// Compute the strides of the source vector considering first k dimensions. | ||||||
llvm::SmallVector<int64_t, 4> sourceStrides(k, extractGranularitySize); | ||||||
for (int i = k - 2; i >= 0; --i) { | ||||||
sourceStrides[i] = sourceStrides[i + 1] * | ||||||
extractOp.getSourceVectorType().getShape()[i + 1]; | ||||||
} | ||||||
// Final shuffle indices has nExtractedSlices * extractGranularitySize | ||||||
// elements. | ||||||
llvm::SmallVector<int64_t, 4> indices(nExtractedSlices * | ||||||
extractGranularitySize); | ||||||
// Compute the strides of the extracted kD vector. | ||||||
llvm::SmallVector<int64_t, 4> extractedStrides(k, 1); | ||||||
// Compute extractedStrides. | ||||||
for (int i = k - 2; i >= 0; --i) { | ||||||
extractedStrides[i] = | ||||||
extractedStrides[i + 1] * sizes[i + 1].cast<IntegerAttr>().getInt(); | ||||||
} | ||||||
// Iterate over all extracted slices from 0 to nExtractedSlices - 1 | ||||||
// and compute the multi-dimensional index and the corresponding linearized | ||||||
// index within the source vector. | ||||||
for (int64_t i = 0; i < nExtractedSlices; ++i) { | ||||||
int64_t index = i; | ||||||
// Compute the corresponding multi-dimensional index. | ||||||
llvm::SmallVector<int64_t, 4> multiDimIndex(k, 0); | ||||||
for (int64_t j = 0; j < k; ++j) { | ||||||
multiDimIndex[j] = (index / extractedStrides[j]); | ||||||
index -= multiDimIndex[j] * extractedStrides[j]; | ||||||
} | ||||||
// Compute the corresponding linearized index in the source vector | ||||||
// i.e. shift the multiDimIndex by the offsets. | ||||||
int64_t linearizedIndex = 0; | ||||||
for (int64_t j = 0; j < k; ++j) { | ||||||
linearizedIndex += | ||||||
(offsets[j].cast<IntegerAttr>().getInt() + multiDimIndex[j]) * | ||||||
sourceStrides[j]; | ||||||
} | ||||||
// Fill the indices array form linearizedIndex to linearizedIndex + | ||||||
// extractGranularitySize. | ||||||
for (int64_t j = 0; j < extractGranularitySize; ++j) { | ||||||
indices[i * extractGranularitySize + j] = linearizedIndex + j; | ||||||
} | ||||||
} | ||||||
// Perform a shuffle to extract the kD vector. | ||||||
rewriter.replaceOpWithNewOp<vector::ShuffleOp>( | ||||||
extractOp, dstType, srcVector, srcVector, | ||||||
rewriter.getI64ArrayAttr(indices)); | ||||||
return success(); | ||||||
} | ||||||
|
||||||
private: | ||||||
unsigned targetVectorBitWidth; | ||||||
}; | ||||||
|
||||||
/// This pattern converts the ShuffleOp that works on nD (n > 1) | ||||||
/// vectors to a ShuffleOp that works on linearized vectors. | ||||||
/// Following, | ||||||
/// vector.shuffle %v1, %v2 [ shuffle_indices ] | ||||||
/// is converted to : | ||||||
/// %v1_1d = vector.shape_cast %v1 | ||||||
/// %v2_1d = vector.shape_cast %v2 | ||||||
/// %out_1d = vector.shuffle %v1_1d, %v2_1d [ shuffle_indices_1d ] | ||||||
/// %out_nd = vector.shape_cast %out_1d | ||||||
// `shuffle_indices_1d` is computed using the sizes and `shuffle_indices` | ||||||
/// of the original shuffle operation. | ||||||
struct LinearizeVectorShuffle final | ||||||
: public OpConversionPattern<vector::ShuffleOp> { | ||||||
using OpConversionPattern::OpConversionPattern; | ||||||
LinearizeVectorShuffle( | ||||||
const TypeConverter &typeConverter, MLIRContext *context, | ||||||
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(), | ||||||
PatternBenefit benefit = 1) | ||||||
: OpConversionPattern(typeConverter, context, benefit), | ||||||
targetVectorBitWidth(targetVectBitWidth) {} | ||||||
|
||||||
LogicalResult | ||||||
matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor, | ||||||
ConversionPatternRewriter &rewriter) const override { | ||||||
Type dstType = getTypeConverter()->convertType(shuffleOp.getType()); | ||||||
assert(!(shuffleOp.getV1VectorType().isScalable() || | ||||||
shuffleOp.getV2VectorType().isScalable() || | ||||||
dstType.cast<VectorType>().isScalable()) && | ||||||
"scalable vectors are not supported."); | ||||||
if (!isLessThanTargetBitWidth(shuffleOp, targetVectorBitWidth)) | ||||||
return rewriter.notifyMatchFailure( | ||||||
shuffleOp, "Can't flatten since targetBitWidth <= OpSize"); | ||||||
|
||||||
Value vec1 = adaptor.getV1(); | ||||||
Value vec2 = adaptor.getV2(); | ||||||
int shuffleSliceLen = 1; | ||||||
int rank = shuffleOp.getV1().getType().getRank(); | ||||||
|
||||||
// If rank > 1, we need to do the shuffle in the granularity of slices | ||||||
// instead of scalars. Size of the slice is equal to the rank-1 innermost | ||||||
// dims. Mask of the shuffle op specifies which slice to take from the | ||||||
// outermost dim. | ||||||
if (rank > 1) { | ||||||
llvm::ArrayRef<int64_t> shape = shuffleOp.getV1().getType().getShape(); | ||||||
for (unsigned i = 1; i < shape.size(); ++i) { | ||||||
shuffleSliceLen *= shape[i]; | ||||||
} | ||||||
} | ||||||
|
||||||
// For each value in the mask, we generate the indices of the source vectors | ||||||
// that needs to be shuffled to the destination vector. If shuffleSliceLen > | ||||||
// 1 we need to shuffle the slices (consecutive shuffleSliceLen number of | ||||||
// elements) instead of scalars. | ||||||
ArrayAttr mask = shuffleOp.getMask(); | ||||||
int64_t totalSizeOfShuffledElmnts = mask.size() * shuffleSliceLen; | ||||||
llvm::SmallVector<int64_t, 2> indices(totalSizeOfShuffledElmnts); | ||||||
for (auto [i, value] : | ||||||
llvm::enumerate(mask.getAsValueRange<IntegerAttr>())) { | ||||||
|
||||||
int64_t v = value.getZExtValue(); | ||||||
std::iota(indices.begin() + shuffleSliceLen * i, | ||||||
indices.begin() + shuffleSliceLen * (i + 1), | ||||||
shuffleSliceLen * v); | ||||||
} | ||||||
|
||||||
rewriter.replaceOpWithNewOp<vector::ShuffleOp>( | ||||||
shuffleOp, dstType, vec1, vec2, rewriter.getI64ArrayAttr(indices)); | ||||||
return success(); | ||||||
} | ||||||
|
||||||
private: | ||||||
unsigned targetVectorBitWidth; | ||||||
}; | ||||||
|
||||||
/// This pattern converts the ExtractOp to a ShuffleOp that works on a | ||||||
/// linearized vector. | ||||||
/// Following, | ||||||
/// vector.extract %source [ position ] | ||||||
/// is converted to : | ||||||
/// %source_1d = vector.shape_cast %source | ||||||
/// %out_1d = vector.shuffle %source_1d, %source_1d [ shuffle_indices_1d ] | ||||||
/// %out_nd = vector.shape_cast %out_1d | ||||||
/// `shuffle_indices_1d` is computed using the position of the original extract. | ||||||
struct LinearizeVectorExtract final | ||||||
: public OpConversionPattern<vector::ExtractOp> { | ||||||
using OpConversionPattern::OpConversionPattern; | ||||||
LinearizeVectorExtract( | ||||||
const TypeConverter &typeConverter, MLIRContext *context, | ||||||
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(), | ||||||
PatternBenefit benefit = 1) | ||||||
: OpConversionPattern(typeConverter, context, benefit), | ||||||
targetVectorBitWidth(targetVectBitWidth) {} | ||||||
LogicalResult | ||||||
matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor, | ||||||
ConversionPatternRewriter &rewriter) const override { | ||||||
Type dstTy = getTypeConverter()->convertType(extractOp.getType()); | ||||||
assert(!(extractOp.getVector().getType().isScalable() || | ||||||
dstTy.cast<VectorType>().isScalable()) && | ||||||
"scalable vectors are not supported."); | ||||||
if (!isLessThanTargetBitWidth(extractOp, targetVectorBitWidth)) | ||||||
return rewriter.notifyMatchFailure( | ||||||
extractOp, "Can't flatten since targetBitWidth <= OpSize"); | ||||||
|
||||||
// Dynamic position is not supported. | ||||||
if (extractOp.hasDynamicPosition()) | ||||||
return rewriter.notifyMatchFailure(extractOp, | ||||||
"dynamic position is not supported."); | ||||||
|
||||||
llvm::ArrayRef<int64_t> shape = extractOp.getVector().getType().getShape(); | ||||||
int64_t size = extractOp.getVector().getType().getNumElements(); | ||||||
|
||||||
// Compute linearized offset. | ||||||
int64_t linearizedOffset = 0; | ||||||
llvm::ArrayRef<int64_t> offsets = extractOp.getStaticPosition(); | ||||||
for (auto [i, off] : llvm::enumerate(offsets)) { | ||||||
size /= shape[i]; | ||||||
linearizedOffset += offsets[i] * size; | ||||||
} | ||||||
|
||||||
llvm::SmallVector<int64_t, 2> indices(size); | ||||||
std::iota(indices.begin(), indices.end(), linearizedOffset); | ||||||
rewriter.replaceOpWithNewOp<vector::ShuffleOp>( | ||||||
extractOp, dstTy, adaptor.getVector(), adaptor.getVector(), | ||||||
rewriter.getI64ArrayAttr(indices)); | ||||||
|
||||||
return success(); | ||||||
} | ||||||
|
||||||
private: | ||||||
unsigned targetVectorBitWidth; | ||||||
}; | ||||||
|
@@ -145,3 +398,21 @@ void mlir::vector::populateVectorLinearizeTypeConversionsAndLegality( | |||||
patterns.add<LinearizeConstant, LinearizeVectorizable>( | ||||||
typeConverter, patterns.getContext(), targetBitWidth); | ||||||
} | ||||||
|
||||||
void mlir::vector::populateVectorLinearizeShuffleLikeOpsPatterns( | ||||||
TypeConverter &typeConverter, RewritePatternSet &patterns, | ||||||
ConversionTarget &target, unsigned int targetBitWidth) { | ||||||
target.addDynamicallyLegalOp<vector::ShuffleOp>( | ||||||
[=](vector::ShuffleOp shuffleOp) -> bool { | ||||||
return isLessThanTargetBitWidth(shuffleOp, targetBitWidth) | ||||||
? (typeConverter.isLegal(shuffleOp) && | ||||||
shuffleOp.getResult() | ||||||
.getType() | ||||||
.cast<mlir::VectorType>() | ||||||
.getRank() == 1) | ||||||
: true; | ||||||
}); | ||||||
patterns.add<LinearizeVectorShuffle, LinearizeVectorExtract, | ||||||
LinearizeVectorExtractStridedSlice>( | ||||||
typeConverter, patterns.getContext(), targetBitWidth); | ||||||
} |
Uh oh!
There was an error while loading. Please reload this page.