Skip to content

[mlir][vector] Add support for linearizing Extract, ExtractStridedSlice, Shuffle VectorOps in VectorLinearize #88204

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 22 commits into from
Apr 18, 2024
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
242 changes: 241 additions & 1 deletion mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,9 @@
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/DialectConversion.h"
#include <numeric>

using namespace mlir;

Expand Down Expand Up @@ -103,6 +105,234 @@ struct LinearizeVectorizable final
return success();
}

private:
unsigned targetVectorBitWidth;
};

struct LinearizeVectorExtractStridedSlice final
: public mlir::OpConversionPattern<mlir::vector::ExtractStridedSliceOp> {
using OpConversionPattern::OpConversionPattern;
LinearizeVectorExtractStridedSlice(
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
: OpConversionPattern(typeConverter, context, benefit),
targetVectorBitWidth(targetVectBitWidth) {}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for adding support for the target vector bitwidth!


LogicalResult
matchAndRewrite(vector::ExtractStridedSliceOp extractOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto dstType = getTypeConverter()->convertType(extractOp.getType());
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why is this needed?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

yes. this is not needed. I removed the dstType checks.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: spell out auto

auto loc = extractOp.getLoc();
if (!dstType)
return rewriter.notifyMatchFailure(loc, "cannot convert type.");
if (extractOp.getVector().getType().isScalable() ||
dstType.cast<VectorType>().isScalable())
return rewriter.notifyMatchFailure(loc,
"scalable vectors are not supported.");
if (!isLessThanTargetBitWidth(extractOp, targetVectorBitWidth))
return rewriter.notifyMatchFailure(
extractOp, "Can't flatten since targetBitWidth <= OpSize");

auto offsets = extractOp.getOffsets().getValue();
auto sizes = extractOp.getSizes().getValue();
auto strides = extractOp.getStrides().getValue();

if (!isConstantIntValue(strides[0], 1))
return rewriter.notifyMatchFailure(
extractOp, "Strided slice with stride != 1 is not supported.");

Value srcVector = adaptor.getVector();

// if kD offsets are specified for nd source vector (n > k), the granularity
// of the extraction is greater than 1. In this case last (n-k) dimensions
// form the extraction granularity. example : %0 =
// vector.extract_strided_slice %src { offsets = [0, 0], sizes = [2, 2],
// strides = [1, 1]} : vector<4x8x8xf32> to vector<2x2x8xf32>
// here, extraction granularity is 8.
int64_t extractSliceLen = 1;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This represents "flattened slice len", right? Why not flattenedSliceLen? Naming is hard 🤷🏻

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

addressed above. basically the extraction can happen only at first k dimensions of an n-D vectors. the remaining dimensions are extracted in full. so the last n-k dimensions form the extraction granularity. this is the meaning I wanted to capture in the naming.

auto n = extractOp.getSourceVectorType().getRank();
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: please, spell out the type when it's not literally redundant in the statement.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed!

auto k = (int64_t)offsets.size();
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: we should spell out auto when the type is not literally redundant on the RHS.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed.

if (n > k) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this if is needed here? k is guaranteed to be <= n, right?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

addressed above. n > k is true for the following example.

%0 = vector.extract_strided_slice %arg0 { offsets = [1, 2], strides = [1, 1], sizes = [1, 4] }
    : vector<2x8x2xf32> to vector<1x4x2xf32>

In this case, only first 2 dims are extracted using the offsets, sizes etc. last dim is extracted in full.
https://mlir.llvm.org/docs/Dialects/Vector/#vectorextract_strided_slice-vectorextractstridedsliceop

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Right, so there are 2 cases:

  • k < n
  • k = n

right? I think that you can get rid of if by doing something like:

int64_t outRank = (int64_t)offsets.size();
int64_t k = outRank;
while (k < n) {
  extractGranularitySize *=
            extractOp.getSourceVectorType().getShape()[outRank + (n-k)];
  ++k;
}

This way there's only one case. Also, I'd avoid variable names like k and n for anything other than loop iterators. Perhaps numKDims and numMDims? Or inputRank/outputRank? Or kD/nD? The last suggestion would be consistent with comments and already a nice improvement :)

for (unsigned i = 0; i < n - k; i++) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: use pre-increment per coding guidelines

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed.

extractSliceLen *= extractOp.getSourceVectorType().getShape()[i + k];
}
}

// get total number of extracted slices
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: we should use capital letters and periods in comments per coding guidelines.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed all comments.

int64_t nExtractedSlices = 1;
for (auto size : sizes) {
nExtractedSlices *= size.cast<IntegerAttr>().getInt();
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you try using computeSuffixProduct instead?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

tried this. but this require constructing an ArrayRef<int64_t>. So I decided to use llvm::for_each.


// compute the strides of the source vector considering first k dimensions
llvm::SmallVector<int64_t, 4> sourceStrides(k, extractSliceLen);
for (int i = k - 2; i >= 0; --i) {
sourceStrides[i] = sourceStrides[i + 1] *
extractOp.getSourceVectorType().getShape()[i + 1];
}
// final shuffle indices has nExtractedElems * extractSliceLen elements
llvm::SmallVector<int64_t, 4> indices(nExtractedSlices * extractSliceLen);
// compute the strides of the extracted kD vector
llvm::SmallVector<int64_t, 4> extractedStrides(k, 1);
// compute extractedStrides
for (int i = k - 2; i >= 0; --i) {
extractedStrides[i] =
extractedStrides[i + 1] * sizes[i + 1].cast<IntegerAttr>().getInt();
}
// iterate over all extracted slices from 0 to nExtractedElems-1
// and compute the multi-dimensional index and the corresponding linearized
// index within the source vector
for (int64_t i = 0; i < nExtractedSlices; ++i) {
int64_t index = i;
// compute the corresponding multi-dimensional index
llvm::SmallVector<int64_t, 4> multiDimIndex(k, 0);
for (int64_t j = 0; j < k; ++j) {
multiDimIndex[j] = (index / extractedStrides[j]);
index -= multiDimIndex[j] * extractedStrides[j];
}
// compute the corresponding linearized index in the source vector
// i.e. shift the multiDimIndex by the offsets
int64_t linearizedIndex = 0;
for (int64_t j = 0; j < k; ++j) {
linearizedIndex +=
(offsets[j].cast<IntegerAttr>().getInt() + multiDimIndex[j]) *
sourceStrides[j];
}
// fill the indices array form linearizedIndex to linearizedIndex +
// sliceLen
for (int64_t j = 0; j < extractSliceLen; ++j) {
indices[i * extractSliceLen + j] = linearizedIndex + j;
}
}
// perform a shuffle to extract the kD vector
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(
extractOp, dstType, srcVector, srcVector,
rewriter.getI64ArrayAttr(indices));

return success();
}

private:
unsigned targetVectorBitWidth;
};

struct LinearizeVectorShffle final
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Shffle -> Shuffle?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed.

: public OpConversionPattern<vector::ShuffleOp> {
using OpConversionPattern::OpConversionPattern;
LinearizeVectorShffle(
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
: OpConversionPattern(typeConverter, context, benefit),
targetVectorBitWidth(targetVectBitWidth) {}

LogicalResult
matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto dstType = getTypeConverter()->convertType(shuffleOp.getType());
auto loc = shuffleOp.getLoc();
if (!dstType)
return rewriter.notifyMatchFailure(loc, "cannot convert type.");

if (shuffleOp.getV1VectorType().isScalable() ||
shuffleOp.getV2VectorType().isScalable() ||
dstType.cast<VectorType>().isScalable())
return rewriter.notifyMatchFailure(loc,
"scalable vectors are not supported.");
if (!isLessThanTargetBitWidth(shuffleOp, targetVectorBitWidth))
return rewriter.notifyMatchFailure(
shuffleOp, "Can't flatten since targetBitWidth <= OpSize");

auto vec1 = adaptor.getV1();
auto vec2 = adaptor.getV2();
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: spell out auto

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed.


int shuffleSliceLen = 1;
int rank = shuffleOp.getV1().getType().getRank();

// if rank > 1, we need to do the shuffle in the granularity of slices
// instead of scalars. Size of the slice is equal to the rank-1 innermost
// dims. Mask of the shuffle op specifies which slice to take from the
// outermost dim.
if (rank > 1) {
auto shape = shuffleOp.getV1().getType().getShape();
for (unsigned i = 1; i < shape.size(); i++) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

pre-increment

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed.

shuffleSliceLen *= shape[i];
}
}

auto mask = shuffleOp.getMask();
auto totalSize = mask.size() * shuffleSliceLen;

llvm::SmallVector<int64_t, 2> indices(totalSize);
for (auto [i, value] :
llvm::enumerate(mask.getAsValueRange<IntegerAttr>())) {

int64_t v = value.getZExtValue();
std::iota(indices.begin() + shuffleSliceLen * i,
indices.begin() + shuffleSliceLen * (i + 1),
shuffleSliceLen * v);
}

rewriter.replaceOpWithNewOp<vector::ShuffleOp>(
shuffleOp, dstType, vec1, vec2, rewriter.getI64ArrayAttr(indices));

return success();
}

private:
unsigned targetVectorBitWidth;
};

struct LinearizeVectorExtract final
: public OpConversionPattern<vector::ExtractOp> {
using OpConversionPattern::OpConversionPattern;
LinearizeVectorExtract(
const TypeConverter &typeConverter, MLIRContext *context,
unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
PatternBenefit benefit = 1)
: OpConversionPattern(typeConverter, context, benefit),
targetVectorBitWidth(targetVectBitWidth) {}
LogicalResult
matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto dstTy = getTypeConverter()->convertType(extractOp.getType());
if (!dstTy)
return rewriter.notifyMatchFailure(extractOp, "cannot convert type.");

if (extractOp.getVector().getType().isScalable() ||
dstTy.cast<VectorType>().isScalable())
return rewriter.notifyMatchFailure(extractOp,
"scalable vectors are not supported.");
if (!isLessThanTargetBitWidth(extractOp, targetVectorBitWidth))
return rewriter.notifyMatchFailure(
extractOp, "Can't flatten since targetBitWidth <= OpSize");

// dynamic position is not supported
if (extractOp.hasDynamicPosition())
return rewriter.notifyMatchFailure(extractOp,
"dynamic position is not supported.");

auto shape = extractOp.getVector().getType().getShape();
auto size = extractOp.getVector().getType().getNumElements();

// compute linearized offset
int64_t linearizedOffset = 0;
auto offsets = extractOp.getStaticPosition();
for (auto [i, off] : llvm::enumerate(offsets)) {
size /= shape[i];
linearizedOffset += offsets[i] * size;
}

llvm::SmallVector<int64_t, 2> indices(size);
std::iota(indices.begin(), indices.end(), linearizedOffset);
rewriter.replaceOpWithNewOp<vector::ShuffleOp>(
extractOp, dstTy, adaptor.getVector(), adaptor.getVector(),
rewriter.getI64ArrayAttr(indices));

return success();
}

private:
unsigned targetVectorBitWidth;
};
Expand Down Expand Up @@ -139,9 +369,19 @@ void mlir::vector::populateVectorLinearizeTypeConversionsAndLegality(
? typeConverter.isLegal(op)
: true);
}
if (isa<vector::ShuffleOp>(op)) {
return (isLessThanTargetBitWidth(op, targetBitWidth)
? (typeConverter.isLegal(op) &&
op->getResult(0)
.getType()
.cast<mlir::VectorType>()
.getRank() == 1)
: true);
}
return std::nullopt;
});

patterns.add<LinearizeConstant, LinearizeVectorizable>(
patterns.add<LinearizeConstant, LinearizeVectorizable, LinearizeVectorShffle,
LinearizeVectorExtract, LinearizeVectorExtractStridedSlice>(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could we move this to a different populate method? Flattening an elementwise op is potentially a no-op but generating shuffles for extract ops could have a noticeable impact in performance

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I added a new populate method called populateVectorLinearizeToShuffleRewritePatterns. If you have a better name suggestion for this please let me know.

typeConverter, patterns.getContext(), targetBitWidth);
}
92 changes: 92 additions & 0 deletions mlir/test/Dialect/Vector/linearize.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -153,3 +153,95 @@ func.func @test_0d_vector() -> vector<f32> {
// ALL: return %[[CST]]
return %0 : vector<f32>
}

// -----
// ALL-LABEL: test_extract_strided_slice_1
// ALL-SAME: (%[[ORIG_ARG:.*]]: vector<4x8xf32>) -> vector<2x2xf32> {
func.func @test_extract_strided_slice_1(%arg0 : vector<4x8xf32>) -> vector<2x2xf32> {
// DEFAULT: %[[ARG:.*]] = vector.shape_cast %[[ORIG_ARG]] : vector<4x8xf32> to vector<32xf32>
// DEFAULT: %[[SHUFFLE:.*]] = vector.shuffle %[[ARG]], %[[ARG]]
// DEFAULT: [4, 5, 12, 13] : vector<32xf32>, vector<32xf32>
// DEFAULT: %[[RES:.*]] = vector.shape_cast %[[SHUFFLE]] : vector<4xf32> to vector<2x2xf32>
// DEFAULT: return %[[RES]] : vector<2x2xf32

// BW-128: %[[ARG:.*]] = vector.shape_cast %[[ORIG_ARG]] : vector<4x8xf32> to vector<32xf32>
// BW-128: %[[SHUFFLE:.*]] = vector.shuffle %[[ARG]], %[[ARG]]
// BW-128: [4, 5, 12, 13] : vector<32xf32>, vector<32xf32>
// BW-128: %[[RES:.*]] = vector.shape_cast %[[SHUFFLE]] : vector<4xf32> to vector<2x2xf32>
// BW-128: return %[[RES]] : vector<2x2xf32>

// BW-0: %[[RES:.*]] = vector.extract_strided_slice %[[ARG:.*]] {offsets = [0, 4], sizes = [2, 2], strides = [1, 1]} : vector<4x8xf32> to vector<2x2xf32>
// BW-0: return %[[RES]] : vector<2x2xf32>
%0 = vector.extract_strided_slice %arg0 { sizes = [2, 2], strides = [1, 1], offsets = [0, 4]}
: vector<4x8xf32> to vector<2x2xf32>
return %0 : vector<2x2xf32>
}

// -----
// ALL-LABEL: test_extract_strided_slice_2
// ALL-SAME: (%[[ORIG_ARG:.*]]: vector<2x8x2xf32>) -> vector<1x4x2xf32> {
func.func @test_extract_strided_slice_2(%arg0 : vector<2x8x2xf32>) -> vector<1x4x2xf32> {
// DEFAULT: %[[ARG:.*]] = vector.shape_cast %[[ORIG_ARG]] : vector<2x8x2xf32> to vector<32xf32>
// DEFAULT: %[[SHUFFLE:.*]] = vector.shuffle %[[ARG]], %[[ARG]]
// DEFAULT: [20, 21, 22, 23, 24, 25, 26, 27] : vector<32xf32>, vector<32xf32>
// DEFAULT: %[[RES:.*]] = vector.shape_cast %[[SHUFFLE]] : vector<8xf32> to vector<1x4x2xf32>
// DEFAULT: return %[[RES]] : vector<1x4x2xf32>

// BW-128: %[[ARG:.*]] = vector.shape_cast %[[ORIG_ARG]] : vector<2x8x2xf32> to vector<32xf32>
// BW-128: %[[SHUFFLE:.*]] = vector.shuffle %[[ARG]], %[[ARG]]
// BW-128: [20, 21, 22, 23, 24, 25, 26, 27] : vector<32xf32>, vector<32xf32>
// BW-128: %[[RES:.*]] = vector.shape_cast %[[SHUFFLE]] : vector<8xf32> to vector<1x4x2xf32>
// BW-128: return %[[RES]] : vector<1x4x2xf32>

// BW-0: %[[RES:.*]] = vector.extract_strided_slice %[[ORIG_ARG]] {offsets = [1, 2], sizes = [1, 4], strides = [1, 1]} : vector<2x8x2xf32> to vector<1x4x2xf32>
// BW-0: return %[[RES]] : vector<1x4x2xf32>
%0 = vector.extract_strided_slice %arg0 { offsets = [1, 2], strides = [1, 1], sizes = [1, 4] }
: vector<2x8x2xf32> to vector<1x4x2xf32>
return %0 : vector<1x4x2xf32>
}

// -----
// ALL-LABEL: test_vector_shuffle
// ALL-SAME: (%[[ORIG_ARG0:.*]]: vector<4x2xf32>, %[[ORIG_ARG1:.*]]: vector<4x2xf32>) -> vector<8x2xf32> {
func.func @test_vector_shuffle(%arg0: vector<4x2xf32>, %arg1: vector<4x2xf32>) -> vector<8x2xf32> {
// DEFAULT: %[[ARG0:.*]] = vector.shape_cast %[[ORIG_ARG0]] : vector<4x2xf32> to vector<8xf32>
// DEFAULT: %[[ARG1:.*]] = vector.shape_cast %[[ORIG_ARG1]] : vector<4x2xf32> to vector<8xf32>
// DEFAULT: %[[SHUFFLE:.*]] = vector.shuffle %[[ARG0]], %[[ARG1]]
// DEFAULT: [0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15] : vector<8xf32>, vector<8xf32>
// DEFAULT: %[[RES:.*]] = vector.shape_cast %[[SHUFFLE]] : vector<16xf32> to vector<8x2xf32>
// DEFAULT: return %[[RES]] : vector<8x2xf32>

// BW-128: %[[ARG0:.*]] = vector.shape_cast %[[ORIG_ARG0]] : vector<4x2xf32> to vector<8xf32>
// BW-128: %[[ARG1:.*]] = vector.shape_cast %[[ORIG_ARG1]] : vector<4x2xf32> to vector<8xf32>
// BW-128: %[[SHUFFLE:.*]] = vector.shuffle %[[ARG0]], %[[ARG1]]
// BW-128: [0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15] : vector<8xf32>, vector<8xf32>
// BW-128: %[[RES:.*]] = vector.shape_cast %[[SHUFFLE]] : vector<16xf32> to vector<8x2xf32>
// BW-128: return %[[RES]] : vector<8x2xf32>

// BW-0: %[[RES:.*]] = vector.shuffle %[[ORIG_ARG0]], %[[ORIG_ARG1]] [0, 4, 1, 5, 2, 6, 3, 7] : vector<4x2xf32>, vector<4x2xf32>
// BW-0: return %[[RES]] : vector<8x2xf32>
%0 = vector.shuffle %arg0, %arg1 [0, 4, 1, 5, 2, 6, 3, 7] : vector<4x2xf32>, vector<4x2xf32>
return %0 : vector<8x2xf32>
}

// -----
// ALL-LABEL: test_vector_extract
// ALL-SAME: (%[[ORIG_ARG:.*]]: vector<2x8x2xf32>) -> vector<8x2xf32> {
func.func @test_vector_extract(%arg0: vector<2x8x2xf32>) -> vector<8x2xf32> {
// DEFAULT: %[[ARG:.*]] = vector.shape_cast %[[ORIG_ARG]] : vector<2x8x2xf32> to vector<32xf32>
// DEFAULT: %[[SHUFFLE:.*]] = vector.shuffle %[[ARG]], %[[ARG]]
// DEFAULT: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] : vector<32xf32>, vector<32xf32>
// DEFAULT: %[[RES:.*]] = vector.shape_cast %[[SHUFFLE]] : vector<16xf32> to vector<8x2xf32>
// DEFAULT: return %[[RES]] : vector<8x2xf32>

// BW-128: %[[ARG:.*]] = vector.shape_cast %[[ORIG_ARG]] : vector<2x8x2xf32> to vector<32xf32>
// BW-128: %[[SHUFFLE:.*]] = vector.shuffle %[[ARG]], %[[ARG]]
// BW-128: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] : vector<32xf32>, vector<32xf32>
// BW-128: %[[RES:.*]] = vector.shape_cast %[[SHUFFLE]] : vector<16xf32> to vector<8x2xf32>
// BW-128: return %[[RES]] : vector<8x2xf32>

// BW-0: %[[RES:.*]] = vector.extract %[[ORIG_ARG]][1] : vector<8x2xf32> from vector<2x8x2xf32>
// BW-0: return %[[RES]] : vector<8x2xf32>
%0 = vector.extract %arg0[1]: vector<8x2xf32> from vector<2x8x2xf32>
return %0 : vector<8x2xf32>
}