-
Notifications
You must be signed in to change notification settings - Fork 13.6k
[mlir][SCF] Avoid generating unnecessary div/rem operations during coalescing #91562
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[mlir][SCF] Avoid generating unnecessary div/rem operations during coalescing #91562
Conversation
…alescing. When coalescing is some of the loops are unit-trip we can avoid generating div/rem instructions during delinearization. Ideally we could use some thing like `affine.delinearize` to handle this but tthat causes dependence issues.
@llvm/pr-subscribers-mlir-scf @llvm/pr-subscribers-mlir Author: None (MaheshRavishankar) ChangesWhen coalescing is some of the loops are unit-trip we can avoid generating div/rem instructions during delinearization. Ideally we could use some thing like Full diff: https://github.com/llvm/llvm-project/pull/91562.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/SCF/Utils/Utils.cpp b/mlir/lib/Dialect/SCF/Utils/Utils.cpp
index 9279081cfd45d..6658cca03eba7 100644
--- a/mlir/lib/Dialect/SCF/Utils/Utils.cpp
+++ b/mlir/lib/Dialect/SCF/Utils/Utils.cpp
@@ -544,11 +544,24 @@ static void denormalizeInductionVariable(RewriterBase &rewriter, Location loc,
static Value getProductOfIntsOrIndexes(RewriterBase &rewriter, Location loc,
ArrayRef<Value> values) {
assert(!values.empty() && "unexpected empty list");
- Value productOf = values.front();
- for (auto v : values.drop_front()) {
- productOf = rewriter.create<arith::MulIOp>(loc, productOf, v);
+ std::optional<Value> productOf;
+ for (auto v : values) {
+ auto vOne = getConstantIntValue(v);
+ if (vOne && vOne.value() == 1)
+ continue;
+ if (productOf)
+ productOf =
+ rewriter.create<arith::MulIOp>(loc, productOf.value(), v).getResult();
+ else
+ productOf = v;
}
- return productOf;
+ if (!productOf) {
+ productOf = rewriter
+ .create<arith::ConstantOp>(
+ loc, rewriter.getOneAttr(values.front().getType()))
+ .getResult();
+ }
+ return productOf.value();
}
/// For each original loop, the value of the
@@ -562,19 +575,43 @@ static Value getProductOfIntsOrIndexes(RewriterBase &rewriter, Location loc,
static std::pair<SmallVector<Value>, SmallPtrSet<Operation *, 2>>
delinearizeInductionVariable(RewriterBase &rewriter, Location loc,
Value linearizedIv, ArrayRef<Value> ubs) {
- Value previous = linearizedIv;
SmallVector<Value> delinearizedIvs(ubs.size());
SmallPtrSet<Operation *, 2> preservedUsers;
- for (unsigned i = 0, e = ubs.size(); i < e; ++i) {
- unsigned idx = ubs.size() - i - 1;
- if (i != 0) {
+
+ llvm::BitVector isUbOne(ubs.size());
+ for (auto [index, ub] : llvm::enumerate(ubs)) {
+ auto ubCst = getConstantIntValue(ub);
+ if (ubCst && ubCst.value() == 1)
+ isUbOne.set(index);
+ }
+
+ // Prune the lead ubs that are all ones.
+ unsigned numLeadingOneUbs = 0;
+ for (auto [index, ub] : llvm::enumerate(ubs)) {
+ if (!isUbOne.test(index)) {
+ break;
+ }
+ delinearizedIvs[index] = rewriter.create<arith::ConstantOp>(
+ loc, rewriter.getZeroAttr(ub.getType()));
+ numLeadingOneUbs++;
+ }
+
+ Value previous = linearizedIv;
+ for (unsigned i = numLeadingOneUbs, e = ubs.size(); i < e; ++i) {
+ unsigned idx = ubs.size() - (i - numLeadingOneUbs) - 1;
+ if (i != numLeadingOneUbs && !isUbOne.test(idx + 1)) {
previous = rewriter.create<arith::DivSIOp>(loc, previous, ubs[idx + 1]);
preservedUsers.insert(previous.getDefiningOp());
}
Value iv = previous;
if (i != e - 1) {
- iv = rewriter.create<arith::RemSIOp>(loc, previous, ubs[idx]);
- preservedUsers.insert(iv.getDefiningOp());
+ if (!isUbOne.test(idx)) {
+ iv = rewriter.create<arith::RemSIOp>(loc, previous, ubs[idx]);
+ preservedUsers.insert(iv.getDefiningOp());
+ } else {
+ iv = rewriter.create<arith::ConstantOp>(
+ loc, rewriter.getZeroAttr(ubs[idx].getType()));
+ }
}
delinearizedIvs[idx] = iv;
}
diff --git a/mlir/test/Dialect/SCF/transform-op-coalesce.mlir b/mlir/test/Dialect/SCF/transform-op-coalesce.mlir
index 4dc3e4ea0ef45..6fcd727621bae 100644
--- a/mlir/test/Dialect/SCF/transform-op-coalesce.mlir
+++ b/mlir/test/Dialect/SCF/transform-op-coalesce.mlir
@@ -299,3 +299,80 @@ module attributes {transform.with_named_sequence} {
// CHECK-NOT: scf.for
// CHECK: transform.named_sequence
+// -----
+
+// Check avoiding generating unnecessary operations while collapsing trip-1 loops.
+func.func @trip_one_loops(%arg0 : tensor<?x?xf32>, %arg1 : index, %arg2 : index) -> tensor<?x?xf32> {
+ %c0 = arith.constant 0 : index
+ %c1 = arith.constant 1 : index
+ %0 = scf.for %iv0 = %c0 to %c1 step %c1 iter_args(%iter0 = %arg0) -> tensor<?x?xf32> {
+ %1 = scf.for %iv1 = %c0 to %c1 step %c1 iter_args(%iter1 = %iter0) -> tensor<?x?xf32> {
+ %2 = scf.for %iv2 = %c0 to %arg1 step %c1 iter_args(%iter2 = %iter1) -> tensor<?x?xf32> {
+ %3 = scf.for %iv3 = %c0 to %c1 step %c1 iter_args(%iter3 = %iter2) -> tensor<?x?xf32> {
+ %4 = scf.for %iv4 = %c0 to %arg2 step %c1 iter_args(%iter4 = %iter3) -> tensor<?x?xf32> {
+ %5 = "some_use"(%iter4, %iv0, %iv1, %iv2, %iv3, %iv4)
+ : (tensor<?x?xf32>, index, index, index, index, index) -> (tensor<?x?xf32>)
+ scf.yield %5 : tensor<?x?xf32>
+ }
+ scf.yield %4 : tensor<?x?xf32>
+ }
+ scf.yield %3 : tensor<?x?xf32>
+ }
+ scf.yield %2 : tensor<?x?xf32>
+ }
+ scf.yield %1 : tensor<?x?xf32>
+ } {coalesce}
+ return %0 : tensor<?x?xf32>
+}
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["scf.for"]} attributes {coalesce} in %arg1 : (!transform.any_op) -> !transform.any_op
+ %1 = transform.cast %0 : !transform.any_op to !transform.op<"scf.for">
+ %2 = transform.loop.coalesce %1 : (!transform.op<"scf.for">) -> (!transform.op<"scf.for">)
+ transform.yield
+ }
+}
+// CHECK-LABEL: func @trip_one_loops
+// CHECK-SAME: , %[[ARG1:.+]]: index,
+// CHECK-SAME: %[[ARG2:.+]]: index)
+// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
+// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
+// CHECK: %[[UB:.+]] = arith.muli %[[ARG1]], %[[ARG2]]
+// CHECK: scf.for %[[IV:.+]] = %[[C0]] to %[[UB]] step %[[C1]]
+// CHECK: %[[IV1:.+]] = arith.remsi %[[IV]], %[[ARG2]]
+// CHECK: %[[IV2:.+]] = arith.divsi %[[IV]], %[[ARG2]]
+// CHECK: "some_use"(%{{[a-zA-Z0-9]+}}, %[[C0]], %[[C0]], %[[IV2]], %[[C0]], %[[IV1]])
+
+// -----
+
+// Check generating no instructions when all except one loops is non unit-trip.
+func.func @all_outer_trip_one(%arg0 : tensor<?x?xf32>, %arg1 : index) -> tensor<?x?xf32> {
+ %c0 = arith.constant 0 : index
+ %c1 = arith.constant 1 : index
+ %0 = scf.for %iv0 = %c0 to %c1 step %c1 iter_args(%iter0 = %arg0) -> tensor<?x?xf32> {
+ %1 = scf.for %iv1 = %c0 to %c1 step %c1 iter_args(%iter1 = %iter0) -> tensor<?x?xf32> {
+ %2 = scf.for %iv2 = %c0 to %arg1 step %c1 iter_args(%iter2 = %iter1) -> tensor<?x?xf32> {
+ %3 = "some_use"(%iter2, %iv0, %iv1, %iv2)
+ : (tensor<?x?xf32>, index, index, index) -> (tensor<?x?xf32>)
+ scf.yield %3 : tensor<?x?xf32>
+ }
+ scf.yield %2 : tensor<?x?xf32>
+ }
+ scf.yield %1 : tensor<?x?xf32>
+ } {coalesce}
+ return %0 : tensor<?x?xf32>
+}
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %0 = transform.structured.match ops{["scf.for"]} attributes {coalesce} in %arg1 : (!transform.any_op) -> !transform.any_op
+ %1 = transform.cast %0 : !transform.any_op to !transform.op<"scf.for">
+ %2 = transform.loop.coalesce %1 : (!transform.op<"scf.for">) -> (!transform.op<"scf.for">)
+ transform.yield
+ }
+}
+// CHECK-LABEL: func @all_outer_trip_one
+// CHECK-SAME: , %[[ARG1:.+]]: index)
+// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
+// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
+// CHECK: scf.for %[[IV:.+]] = %[[C0]] to %[[ARG1]] step %[[C1]]
+// CHECK: "some_use"(%{{[a-zA-Z0-9]+}}, %[[C0]], %[[C0]], %[[IV]])
|
auto ubCst = getConstantIntValue(ub); | ||
if (ubCst && ubCst.value() == 1) | ||
isUbOne.set(index); | ||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Are the upper bounds already normalized to unit step and zero lower bound by this point?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yup...
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index | ||
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index | ||
// CHECK: scf.for %[[IV:.+]] = %[[C0]] to %[[ARG1]] step %[[C1]] | ||
// CHECK: "some_use"(%{{[a-zA-Z0-9]+}}, %[[C0]], %[[C0]], %[[IV]]) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you add a check with UB = 1 and non-zero lower bound?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I tried that... it basically just generates the divsi/remsi instructions... I think I am going to call bankrupt on making this be "more smart" . Best way forward is to just move affine.delinearize
out of affine dialect into arith
dialect and then just use that instead of what we are doing here.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
SGTM, I was mainly asking to check if the pattern is correct in this case (tied with the earlier question)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM!
When coalescing is some of the loops are unit-trip we can avoid generating div/rem instructions during delinearization. Ideally we could use some thing like
affine.delinearize
to handle this but tthat causes dependence issues.