Skip to content

[mlir][vector] Add support for linearizing Insert VectorOp in VectorLinearize #92370

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 28, 2024

Conversation

akroviakov
Copy link
Contributor

Building on top of #88204, this PR adds support for converting vector.insert into an equivalent vector.shuffle operation that operates on linearized (1-D) vectors.

Copy link

Thank you for submitting a Pull Request (PR) to the LLVM Project!

This PR will be automatically labeled and the relevant teams will be
notified.

If you wish to, you can add reviewers by using the "Reviewers" section on this page.

If this is not working for you, it is probably because you do not have write
permissions for the repository. In which case you can instead tag reviewers by
name in a comment by using @ followed by their GitHub username.

If you have received no comments on your PR for a week, you can request a review
by "ping"ing the PR by adding a comment “Ping”. The common courtesy "ping" rate
is once a week. Please remember that you are asking for valuable time from other developers.

If you have further questions, they may be answered by the LLVM GitHub User Guide.

You can also ask questions in a comment on this PR, on the LLVM Discord or on the forums.

@llvmbot
Copy link
Member

llvmbot commented May 16, 2024

@llvm/pr-subscribers-mlir

Author: Artem Kroviakov (akroviakov)

Changes

Building on top of #88204, this PR adds support for converting vector.insert into an equivalent vector.shuffle operation that operates on linearized (1-D) vectors.


Full diff: https://github.com/llvm/llvm-project/pull/92370.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp (+99-1)
  • (modified) mlir/test/Dialect/Vector/linearize.mlir (+29)
diff --git a/mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp
index 802a64b0805ee..55d2903d8427d 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp
@@ -44,6 +44,22 @@ static bool isLessThanTargetBitWidth(Operation *op, unsigned targetBitWidth) {
   return true;
 }
 
+static bool isLessThanOrEqualTargetBitWidth(mlir::Type t,
+                                            unsigned targetBitWidth) {
+  VectorType vecType = dyn_cast<VectorType>(t);
+  // Reject index since getElementTypeBitWidth will abort for Index types.
+  if (!vecType || vecType.getElementType().isIndex())
+    return false;
+  // There are no dimension to fold if it is a 0-D vector.
+  if (vecType.getRank() == 0)
+    return false;
+  unsigned trailingVecDimBitWidth =
+      vecType.getShape().back() * vecType.getElementTypeBitWidth();
+  if (trailingVecDimBitWidth > targetBitWidth)
+    return false;
+  return true;
+}
+
 namespace {
 struct LinearizeConstant final : OpConversionPattern<arith::ConstantOp> {
   using OpConversionPattern::OpConversionPattern;
@@ -355,6 +371,88 @@ struct LinearizeVectorExtract final
     return success();
   }
 
+private:
+  unsigned targetVectorBitWidth;
+};
+
+/// This pattern converts the InsertOp to a ShuffleOp that works on a
+/// linearized vector.
+/// Following,
+///   vector.insert %source %destination [ position ]
+/// is converted to :
+///   %source_1d = vector.shape_cast %source
+///   %destination_1d = vector.shape_cast %destination
+///   %out_1d = vector.shuffle %destination_1d, %source_1d [ shuffle_indices_1d
+///   ] %out_nd = vector.shape_cast %out_1d
+/// `shuffle_indices_1d` is computed using the position of the original insert.
+struct LinearizeVectorInsert final
+    : public mlir::OpConversionPattern<mlir::vector::InsertOp> {
+  using OpConversionPattern::OpConversionPattern;
+  LinearizeVectorInsert(
+      const TypeConverter &typeConverter, MLIRContext *context,
+      unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
+      PatternBenefit benefit = 1)
+      : OpConversionPattern(typeConverter, context, benefit),
+        targetVectorBitWidth(targetVectBitWidth) {}
+  mlir::LogicalResult
+  matchAndRewrite(mlir::vector::InsertOp insertOp, OpAdaptor adaptor,
+                  mlir::ConversionPatternRewriter &rewriter) const override {
+    Type dstTy = getTypeConverter()->convertType(insertOp.getDestVectorType());
+    assert(!(insertOp.getDestVectorType().isScalable() ||
+             cast<VectorType>(dstTy).isScalable()) &&
+           "scalable vectors are not supported.");
+
+    if (!isLessThanOrEqualTargetBitWidth(insertOp.getSourceType(),
+                                         targetVectorBitWidth))
+      return rewriter.notifyMatchFailure(
+          insertOp, "Can't flatten since targetBitWidth < OpSize");
+
+    // dynamic position is not supported
+    if (insertOp.hasDynamicPosition())
+      return rewriter.notifyMatchFailure(insertOp,
+                                         "dynamic position is not supported.");
+    auto srcTy = insertOp.getSourceType();
+    auto srcAsVec = mlir::dyn_cast<mlir::VectorType>(srcTy);
+    uint64_t srcSize = 0;
+    if (srcAsVec) {
+      srcSize = srcAsVec.getNumElements();
+    } else {
+      return rewriter.notifyMatchFailure(insertOp,
+                                         "scalars are not supported.");
+    }
+
+    auto dstShape = insertOp.getDestVectorType().getShape();
+    const auto dstSize = insertOp.getDestVectorType().getNumElements();
+    auto dstSizeForOffsets = dstSize;
+
+    // compute linearized offset
+    int64_t linearizedOffset = 0;
+    auto offsetsNd = insertOp.getStaticPosition();
+    for (auto [dim, offset] : llvm::enumerate(offsetsNd)) {
+      dstSizeForOffsets /= dstShape[dim];
+      linearizedOffset += offset * dstSizeForOffsets;
+    }
+
+    llvm::SmallVector<int64_t, 2> indices(dstSize);
+    auto origValsUntil = indices.begin();
+    std::advance(origValsUntil, linearizedOffset);
+    std::iota(indices.begin(), origValsUntil,
+              0); // original values that remain [0, offset)
+    auto newValsUntil = origValsUntil;
+    std::advance(newValsUntil, srcSize);
+    std::iota(origValsUntil, newValsUntil,
+              dstSize); // new values [offset, offset+srcNumElements)
+    std::iota(newValsUntil, indices.end(),
+              linearizedOffset + srcSize); // the rest of original values
+                                           // [offset+srcNumElements, end)
+
+    rewriter.replaceOpWithNewOp<mlir::vector::ShuffleOp>(
+        insertOp, dstTy, adaptor.getDest(), adaptor.getSource(),
+        rewriter.getI64ArrayAttr(indices));
+
+    return mlir::success();
+  }
+
 private:
   unsigned targetVectorBitWidth;
 };
@@ -410,6 +508,6 @@ void mlir::vector::populateVectorLinearizeShuffleLikeOpsPatterns(
                    : true;
       });
   patterns.add<LinearizeVectorShuffle, LinearizeVectorExtract,
-               LinearizeVectorExtractStridedSlice>(
+               LinearizeVectorInsert, LinearizeVectorExtractStridedSlice>(
       typeConverter, patterns.getContext(), targetBitWidth);
 }
diff --git a/mlir/test/Dialect/Vector/linearize.mlir b/mlir/test/Dialect/Vector/linearize.mlir
index b29ceab5783d7..31a59b809a74b 100644
--- a/mlir/test/Dialect/Vector/linearize.mlir
+++ b/mlir/test/Dialect/Vector/linearize.mlir
@@ -245,3 +245,32 @@ func.func @test_vector_extract(%arg0: vector<2x8x2xf32>) -> vector<8x2xf32> {
   %0 = vector.extract %arg0[1]: vector<8x2xf32> from vector<2x8x2xf32>
   return %0 : vector<8x2xf32>
 }
+
+// -----
+// ALL-LABEL: test_vector_insert
+// ALL-SAME: (%[[DEST:.*]]: vector<2x8x4xf32>, %[[SRC:.*]]: vector<8x4xf32>) -> vector<2x8x4xf32> {
+func.func @test_vector_insert(%arg0: vector<2x8x4xf32>, %arg1: vector<8x4xf32>) -> vector<2x8x4xf32> {
+  // DEFAULT: %[[ARG_SRC:.*]] = vector.shape_cast %[[SRC]] : vector<8x4xf32> to vector<32xf32>
+  // DEFAULT: %[[ARG_DEST:.*]] = vector.shape_cast %[[DEST]] : vector<2x8x4xf32> to vector<64xf32>
+  // DEFAULT: %[[SHUFFLE:.*]] = vector.shuffle %[[ARG_DEST]], %[[ARG_SRC]]
+  // DEFAULT-SAME: [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
+  // DEFAULT-SAME: 88, 89, 90, 91, 92, 93, 94, 95, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
+  // DEFAULT-SAME: 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63] : vector<64xf32>, vector<32xf32>
+  // DEFAULT: %[[RES:.*]] = vector.shape_cast %[[SHUFFLE]] : vector<64xf32> to vector<2x8x4xf32>
+  // DEFAULT: return %[[RES]] : vector<2x8x4xf32>
+
+  // BW-128: %[[ARG_SRC:.*]] = vector.shape_cast %[[SRC]] : vector<8x4xf32> to vector<32xf32>
+  // BW-128: %[[ARG_DEST:.*]] = vector.shape_cast %[[DEST]] : vector<2x8x4xf32> to vector<64xf32>
+  // BW-128: %[[SHUFFLE:.*]] = vector.shuffle %[[ARG_DEST]], %[[ARG_SRC]]
+  // BW-128-SAME: [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
+  // BW-128-SAME: 88, 89, 90, 91, 92, 93, 94, 95, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
+  // BW-128-SAME: 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63] : vector<64xf32>, vector<32xf32>
+  // BW-128: %[[RES:.*]] = vector.shape_cast %[[SHUFFLE]] : vector<64xf32> to vector<2x8x4xf32>
+  // BW-128: return %[[RES]] : vector<2x8x4xf32>
+
+  // BW-0: %[[RES:.*]] = vector.insert %[[SRC]], %[[DEST]] [0] : vector<8x4xf32> into vector<2x8x4xf32>
+  // BW-0: return %[[RES]] : vector<2x8x4xf32>
+
+  %0 = vector.insert %arg1, %arg0[0]: vector<8x4xf32> into vector<2x8x4xf32>
+  return %0 : vector<2x8x4xf32>
+}

@llvmbot
Copy link
Member

llvmbot commented May 16, 2024

@llvm/pr-subscribers-mlir-vector

Author: Artem Kroviakov (akroviakov)

Changes

Building on top of #88204, this PR adds support for converting vector.insert into an equivalent vector.shuffle operation that operates on linearized (1-D) vectors.


Full diff: https://github.com/llvm/llvm-project/pull/92370.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp (+99-1)
  • (modified) mlir/test/Dialect/Vector/linearize.mlir (+29)
diff --git a/mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp
index 802a64b0805ee..55d2903d8427d 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorLinearize.cpp
@@ -44,6 +44,22 @@ static bool isLessThanTargetBitWidth(Operation *op, unsigned targetBitWidth) {
   return true;
 }
 
+static bool isLessThanOrEqualTargetBitWidth(mlir::Type t,
+                                            unsigned targetBitWidth) {
+  VectorType vecType = dyn_cast<VectorType>(t);
+  // Reject index since getElementTypeBitWidth will abort for Index types.
+  if (!vecType || vecType.getElementType().isIndex())
+    return false;
+  // There are no dimension to fold if it is a 0-D vector.
+  if (vecType.getRank() == 0)
+    return false;
+  unsigned trailingVecDimBitWidth =
+      vecType.getShape().back() * vecType.getElementTypeBitWidth();
+  if (trailingVecDimBitWidth > targetBitWidth)
+    return false;
+  return true;
+}
+
 namespace {
 struct LinearizeConstant final : OpConversionPattern<arith::ConstantOp> {
   using OpConversionPattern::OpConversionPattern;
@@ -355,6 +371,88 @@ struct LinearizeVectorExtract final
     return success();
   }
 
+private:
+  unsigned targetVectorBitWidth;
+};
+
+/// This pattern converts the InsertOp to a ShuffleOp that works on a
+/// linearized vector.
+/// Following,
+///   vector.insert %source %destination [ position ]
+/// is converted to :
+///   %source_1d = vector.shape_cast %source
+///   %destination_1d = vector.shape_cast %destination
+///   %out_1d = vector.shuffle %destination_1d, %source_1d [ shuffle_indices_1d
+///   ] %out_nd = vector.shape_cast %out_1d
+/// `shuffle_indices_1d` is computed using the position of the original insert.
+struct LinearizeVectorInsert final
+    : public mlir::OpConversionPattern<mlir::vector::InsertOp> {
+  using OpConversionPattern::OpConversionPattern;
+  LinearizeVectorInsert(
+      const TypeConverter &typeConverter, MLIRContext *context,
+      unsigned targetVectBitWidth = std::numeric_limits<unsigned>::max(),
+      PatternBenefit benefit = 1)
+      : OpConversionPattern(typeConverter, context, benefit),
+        targetVectorBitWidth(targetVectBitWidth) {}
+  mlir::LogicalResult
+  matchAndRewrite(mlir::vector::InsertOp insertOp, OpAdaptor adaptor,
+                  mlir::ConversionPatternRewriter &rewriter) const override {
+    Type dstTy = getTypeConverter()->convertType(insertOp.getDestVectorType());
+    assert(!(insertOp.getDestVectorType().isScalable() ||
+             cast<VectorType>(dstTy).isScalable()) &&
+           "scalable vectors are not supported.");
+
+    if (!isLessThanOrEqualTargetBitWidth(insertOp.getSourceType(),
+                                         targetVectorBitWidth))
+      return rewriter.notifyMatchFailure(
+          insertOp, "Can't flatten since targetBitWidth < OpSize");
+
+    // dynamic position is not supported
+    if (insertOp.hasDynamicPosition())
+      return rewriter.notifyMatchFailure(insertOp,
+                                         "dynamic position is not supported.");
+    auto srcTy = insertOp.getSourceType();
+    auto srcAsVec = mlir::dyn_cast<mlir::VectorType>(srcTy);
+    uint64_t srcSize = 0;
+    if (srcAsVec) {
+      srcSize = srcAsVec.getNumElements();
+    } else {
+      return rewriter.notifyMatchFailure(insertOp,
+                                         "scalars are not supported.");
+    }
+
+    auto dstShape = insertOp.getDestVectorType().getShape();
+    const auto dstSize = insertOp.getDestVectorType().getNumElements();
+    auto dstSizeForOffsets = dstSize;
+
+    // compute linearized offset
+    int64_t linearizedOffset = 0;
+    auto offsetsNd = insertOp.getStaticPosition();
+    for (auto [dim, offset] : llvm::enumerate(offsetsNd)) {
+      dstSizeForOffsets /= dstShape[dim];
+      linearizedOffset += offset * dstSizeForOffsets;
+    }
+
+    llvm::SmallVector<int64_t, 2> indices(dstSize);
+    auto origValsUntil = indices.begin();
+    std::advance(origValsUntil, linearizedOffset);
+    std::iota(indices.begin(), origValsUntil,
+              0); // original values that remain [0, offset)
+    auto newValsUntil = origValsUntil;
+    std::advance(newValsUntil, srcSize);
+    std::iota(origValsUntil, newValsUntil,
+              dstSize); // new values [offset, offset+srcNumElements)
+    std::iota(newValsUntil, indices.end(),
+              linearizedOffset + srcSize); // the rest of original values
+                                           // [offset+srcNumElements, end)
+
+    rewriter.replaceOpWithNewOp<mlir::vector::ShuffleOp>(
+        insertOp, dstTy, adaptor.getDest(), adaptor.getSource(),
+        rewriter.getI64ArrayAttr(indices));
+
+    return mlir::success();
+  }
+
 private:
   unsigned targetVectorBitWidth;
 };
@@ -410,6 +508,6 @@ void mlir::vector::populateVectorLinearizeShuffleLikeOpsPatterns(
                    : true;
       });
   patterns.add<LinearizeVectorShuffle, LinearizeVectorExtract,
-               LinearizeVectorExtractStridedSlice>(
+               LinearizeVectorInsert, LinearizeVectorExtractStridedSlice>(
       typeConverter, patterns.getContext(), targetBitWidth);
 }
diff --git a/mlir/test/Dialect/Vector/linearize.mlir b/mlir/test/Dialect/Vector/linearize.mlir
index b29ceab5783d7..31a59b809a74b 100644
--- a/mlir/test/Dialect/Vector/linearize.mlir
+++ b/mlir/test/Dialect/Vector/linearize.mlir
@@ -245,3 +245,32 @@ func.func @test_vector_extract(%arg0: vector<2x8x2xf32>) -> vector<8x2xf32> {
   %0 = vector.extract %arg0[1]: vector<8x2xf32> from vector<2x8x2xf32>
   return %0 : vector<8x2xf32>
 }
+
+// -----
+// ALL-LABEL: test_vector_insert
+// ALL-SAME: (%[[DEST:.*]]: vector<2x8x4xf32>, %[[SRC:.*]]: vector<8x4xf32>) -> vector<2x8x4xf32> {
+func.func @test_vector_insert(%arg0: vector<2x8x4xf32>, %arg1: vector<8x4xf32>) -> vector<2x8x4xf32> {
+  // DEFAULT: %[[ARG_SRC:.*]] = vector.shape_cast %[[SRC]] : vector<8x4xf32> to vector<32xf32>
+  // DEFAULT: %[[ARG_DEST:.*]] = vector.shape_cast %[[DEST]] : vector<2x8x4xf32> to vector<64xf32>
+  // DEFAULT: %[[SHUFFLE:.*]] = vector.shuffle %[[ARG_DEST]], %[[ARG_SRC]]
+  // DEFAULT-SAME: [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
+  // DEFAULT-SAME: 88, 89, 90, 91, 92, 93, 94, 95, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
+  // DEFAULT-SAME: 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63] : vector<64xf32>, vector<32xf32>
+  // DEFAULT: %[[RES:.*]] = vector.shape_cast %[[SHUFFLE]] : vector<64xf32> to vector<2x8x4xf32>
+  // DEFAULT: return %[[RES]] : vector<2x8x4xf32>
+
+  // BW-128: %[[ARG_SRC:.*]] = vector.shape_cast %[[SRC]] : vector<8x4xf32> to vector<32xf32>
+  // BW-128: %[[ARG_DEST:.*]] = vector.shape_cast %[[DEST]] : vector<2x8x4xf32> to vector<64xf32>
+  // BW-128: %[[SHUFFLE:.*]] = vector.shuffle %[[ARG_DEST]], %[[ARG_SRC]]
+  // BW-128-SAME: [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
+  // BW-128-SAME: 88, 89, 90, 91, 92, 93, 94, 95, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
+  // BW-128-SAME: 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63] : vector<64xf32>, vector<32xf32>
+  // BW-128: %[[RES:.*]] = vector.shape_cast %[[SHUFFLE]] : vector<64xf32> to vector<2x8x4xf32>
+  // BW-128: return %[[RES]] : vector<2x8x4xf32>
+
+  // BW-0: %[[RES:.*]] = vector.insert %[[SRC]], %[[DEST]] [0] : vector<8x4xf32> into vector<2x8x4xf32>
+  // BW-0: return %[[RES]] : vector<2x8x4xf32>
+
+  %0 = vector.insert %arg1, %arg0[0]: vector<8x4xf32> into vector<2x8x4xf32>
+  return %0 : vector<2x8x4xf32>
+}

@akroviakov akroviakov force-pushed the akroviak/vec_insert_linearize branch from 1fa0571 to 51115c2 Compare May 16, 2024 10:04
@akroviakov akroviakov force-pushed the akroviak/vec_insert_linearize branch from 51115c2 to 18c92bb Compare May 16, 2024 13:34
Copy link

github-actions bot commented May 16, 2024

✅ With the latest revision this PR passed the C/C++ code formatter.

@akroviakov akroviakov force-pushed the akroviak/vec_insert_linearize branch from 18c92bb to d991dc9 Compare May 16, 2024 16:37
…inearize

Building on top of llvm#88204, this commit adds support for InsertOp.
@akroviakov akroviakov force-pushed the akroviak/vec_insert_linearize branch from d991dc9 to 41a5598 Compare May 16, 2024 17:04
@Hardcode84
Copy link
Contributor

LGTM, but please wait for other reviewers

Copy link
Contributor

@Hardcode84 Hardcode84 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's merge it.

@Hardcode84 Hardcode84 merged commit 01fbc56 into llvm:main May 28, 2024
4 checks passed
Copy link

@akroviakov Congratulations on having your first Pull Request (PR) merged into the LLVM Project!

Your changes will be combined with recent changes from other authors, then tested
by our build bots. If there is a problem with a build, you may receive a report in an email or a comment on this PR.

Please check whether problems have been caused by your change specifically, as
the builds can include changes from many authors. It is not uncommon for your
change to be included in a build that fails due to someone else's changes, or
infrastructure issues.

How to do this, and the rest of the post-merge process, is covered in detail here.

If your change does cause a problem, it may be reverted, or you can revert it yourself.
This is a normal part of LLVM development. You can fix your changes and open a new PR to merge them again.

If you don't get any reports, no action is required from you. Your changes are working as expected, well done!

Comment on lines +398 to +400
assert(!(insertOp.getDestVectorType().isScalable() ||
cast<VectorType>(dstTy).isScalable()) &&
"scalable vectors are not supported.");
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why is this an assert rather than rewriter.notifyMatchFailure?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for noting this, #93590 addresses it and also refactors other patterns in VectorLinearize.cpp to use notifyMatchFailure

vg0204 pushed a commit to vg0204/llvm-project that referenced this pull request May 29, 2024
…inearize (llvm#92370)

Building on top of
[llvm#88204](llvm#88204), this PR adds
support for converting `vector.insert` into an equivalent
`vector.shuffle` operation that operates on linearized (1-D) vectors.
chencha3 pushed a commit that referenced this pull request Jun 21, 2024
…arize (#93590)

As it was [suggested](#92370 (comment)), the `assert` is replaced by `notifyMatchFailure` for improved consistency.
AlexisPerry pushed a commit to llvm-project-tlp/llvm-project that referenced this pull request Jul 9, 2024
…arize (llvm#93590)

As it was [suggested](llvm#92370 (comment)), the `assert` is replaced by `notifyMatchFailure` for improved consistency.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants