Skip to content

[mlir] Fix bugs in expand_shape patterns after semantics changes #94631

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jun 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 40 additions & 10 deletions mlir/include/mlir/Dialect/Utils/ReshapeOpsUtils.h
Original file line number Diff line number Diff line change
Expand Up @@ -85,21 +85,49 @@ bool isReassociationValid(ArrayRef<AffineMap> reassociation,
template <typename ReshapeOpTy, typename InverseReshapeOpTy>
static OpFoldResult foldReshapeOp(ReshapeOpTy reshapeOp,
ArrayRef<Attribute> operands) {

// Fold identity reshape.
if (reshapeOp.getSrcType() == reshapeOp.getType())
return reshapeOp.getSrc();

// Fold producer-consumer reshape ops where the operand type of the
// producer is same as the return type of the consumer.
auto reshapeSrcOp =
reshapeOp.getSrc().template getDefiningOp<InverseReshapeOpTy>();
if (reshapeSrcOp && reshapeSrcOp.getSrcType() == reshapeOp.getResultType())
return reshapeSrcOp.getSrc();

// Reshape of a constant can be replaced with a new constant.
if (auto elements = dyn_cast_or_null<DenseElementsAttr>(operands.front()))
return elements.reshape(cast<ShapedType>(reshapeOp.getResult().getType()));

// Fold if the producer reshape source has the same shape with at most 1
// dynamic dimension.
auto reshapeSrcOp =
reshapeOp.getSrc().template getDefiningOp<InverseReshapeOpTy>();
if (!reshapeSrcOp)
return nullptr;
auto srcType = reshapeSrcOp.getSrcType();
auto resultType = reshapeOp.getResultType();
if (srcType != resultType)
return nullptr;

if (llvm::count_if(srcType.getShape(), ShapedType::isDynamic) < 2) {
return reshapeSrcOp.getSrc();
}

// Fold producer-consumer reshape ops when they are perfect inverses of each
// other:
// 1) Reassociation indices are equivalent.
// 2) Boundary types are equivalent.
// 3) No reassociations have more than 1 dynamic dimension, and reassociated
// shapes are equal for each reassociation.
auto reassociations = reshapeOp.getReassociationIndices();
if (reassociations != reshapeSrcOp.getReassociationIndices())
return nullptr;
// If the reshapes are expanding and then collapsing, the ops can be folded
// despite multiple dynamic dimensions.
if (srcType.getRank() < reshapeSrcOp.getResultType().getRank())
return reshapeSrcOp.getSrc();
if (llvm::all_of(reassociations, [&](auto reInd) {
ArrayRef<int64_t> srcSlice =
srcType.getShape().slice(reInd.front(), reInd.size());
return llvm::count_if(srcSlice, ShapedType::isDynamic) < 2;
})) {
return reshapeSrcOp.getSrc();
}
return nullptr;
}

Expand Down Expand Up @@ -360,10 +388,12 @@ struct ComposeExpandOfCollapseOp : public OpRewritePattern<ExpandOpTy> {
resultShape.slice(resultIndices.front(), resultIndices.size());

if (srcSubShape.size() == resultSubShape.size()) {
if (srcSubShape == resultSubShape)
if (srcSubShape == resultSubShape &&
llvm::count_if(srcSubShape, ShapedType::isDynamic) < 2) {
composedReassociation.push_back(srcIndices);
else
} else {
return std::nullopt;
}
}

// Find reassociation to collapse `srcSubShape` into `resultSubShape`.
Expand Down
72 changes: 70 additions & 2 deletions mlir/test/Dialect/Tensor/canonicalize.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -1139,7 +1139,7 @@ func.func @fold_collapse_of_expand(%arg0 : tensor<12x4xf32>) -> tensor<12x4xf32>
return %1 : tensor<12x4xf32>
}
// CHECK-LABEL: @fold_collapse_of_expand
// CHECK-NOT: linalg.{{.*}}shape
// CHECK-NOT: tensor.{{.*}}_shape

// -----

Expand All @@ -1152,7 +1152,75 @@ func.func @fold_collapse_of_expand_dynamic(%arg0 : tensor<?x?xf32>, %arg1: index
return %1 : tensor<?x?xf32>
}
// CHECK-LABEL: @fold_collapse_of_expand_dynamic
// CHECK-NOT: linalg.{{.*}}_shape
// CHECK-NOT: tensor.{{.*}}_shape

// -----

func.func @fold_collapse_of_expand_fully_dynamic(%arg0 : tensor<?x?xf32>, %arg1: index, %arg2: index, %arg3: index)
-> tensor<?x?xf32> {
%0 = tensor.expand_shape %arg0 [[0, 1], [2]] output_shape [%arg1, %arg2, %arg3]
: tensor<?x?xf32> into tensor<?x?x?xf32>
%1 = tensor.collapse_shape %0 [[0, 1], [2]]
: tensor<?x?x?xf32> into tensor<?x?xf32>
return %1 : tensor<?x?xf32>
}
// CHECK-LABEL: @fold_collapse_of_expand_fully_dynamic
// CHECK-NOT: tensor.{{.*}}_shape

// -----

func.func @no_fold_parallel_collapse_of_expand_dynamic(%arg0 : tensor<?x?x?xf32>, %arg1: index, %arg2: index, %arg3: index, %arg4: index)
-> tensor<?x?x?xf32> {
%0 = tensor.expand_shape %arg0 [[0, 1], [2], [3]] output_shape [%arg1, %arg2, %arg3, %arg4]
: tensor<?x?x?xf32> into tensor<?x?x?x?xf32>
%1 = tensor.collapse_shape %0 [[0], [1], [2, 3]]
: tensor<?x?x?x?xf32> into tensor<?x?x?xf32>
return %1 : tensor<?x?x?xf32>
}
// CHECK-LABEL: @no_fold_parallel_collapse_of_expand_dynamic
// CHECK: tensor.expand_shape
// CHECK: %[[COLLAPSE:.+]] = tensor.collapse_shape
// CHECK: return %[[COLLAPSE]]

// -----

func.func @fold_expand_of_collapse(%arg0 : tensor<3x4x4xf32>) -> tensor<3x4x4xf32> {
%0 = tensor.collapse_shape %arg0 [[0, 1], [2]]
: tensor<3x4x4xf32> into tensor<12x4xf32>
%1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [3, 4, 4]
: tensor<12x4xf32> into tensor<3x4x4xf32>
return %1 : tensor<3x4x4xf32>
}
// CHECK-LABEL: @fold_expand_of_collapse
// CHECK-NOT: tensor.{{.*}}_shape

// -----

func.func @fold_expand_of_collapse_dynamic(%arg0 : tensor<?x4x?xf32>, %arg1: index, %arg2: index)
-> tensor<?x4x?xf32> {
%0 = tensor.collapse_shape %arg0 [[0, 1], [2]]
: tensor<?x4x?xf32> into tensor<?x?xf32>
%1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%arg1, 4, %arg2]
: tensor<?x?xf32> into tensor<?x4x?xf32>
return %1 : tensor<?x4x?xf32>
}
// CHECK-LABEL: @fold_expand_of_collapse_dynamic
// CHECK-NOT: tensor.{{.*}}_shape

// -----

func.func @no_fold_expand_of_collapse_dynamic(%arg0 : tensor<?x?x?xf32>, %arg1: index, %arg2: index, %arg3: index)
-> tensor<?x?x?xf32> {
%0 = tensor.collapse_shape %arg0 [[0, 1], [2]]
: tensor<?x?x?xf32> into tensor<?x?xf32>
%1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%arg1, %arg2, %arg3]
: tensor<?x?xf32> into tensor<?x?x?xf32>
return %1 : tensor<?x?x?xf32>
}
// CHECK-LABEL: @no_fold_expand_of_collapse_dynamic
// CHECK: tensor.collapse_shape
// CHECK: %[[EXPAND:.+]] = tensor.expand_shape
// CHECK: return %[[EXPAND]]

// -----

Expand Down
Loading