Skip to content

Add cuBLAS library migrated samples #1436

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,307 @@
/*
* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#pragma once

#include <sycl/sycl.hpp>
#include <dpct/dpct.hpp>
#include <cmath>
#include <functional>
#include <iostream>
#include <random>
#include <stdexcept>
#include <string>
#include <dpct/lib_common_utils.hpp>

#include <complex>

// CUDA API error checking
/*
DPCT1001:1: The statement could not be removed.
*/
/*
DPCT1000:2: Error handling if-stmt was detected but could not be rewritten.
*/
#define CUDA_CHECK(err) \
do { \
int err_ = (err); \
if (err_ != 0) { \
std::printf("CUDA error %d at %s:%d\n", err_, __FILE__, __LINE__); \
throw std::runtime_error("CUDA error"); \
} \
} while (0)

// cublas API error checking
#define CUBLAS_CHECK(err) \
do { \
int err_ = (err); \
if (err_ != 0) { \
std::printf("cublas error %d at %s:%d\n", err_, __FILE__, \
__LINE__); \
throw std::runtime_error("cublas error"); \
} \
} while (0)

// memory alignment
#define ALIGN_TO(A, B) (((A + B - 1) / B) * B)

// device memory pitch alignment
static const size_t device_alignment = 32;

// type traits
template <typename T> struct traits;

template <> struct traits<float> {
// scalar type
typedef float T;
typedef T S;

static constexpr T zero = 0.f;
static constexpr dpct::library_data_t cuda_data_type =
dpct::library_data_t::real_float;

inline static S abs(T val) { return fabs(val); }

template <typename RNG> inline static T rand(RNG &gen) { return (S)gen(); }

inline static T add(T a, T b) { return a + b; }

inline static T mul(T v, double f) { return v * f; }
};

template <> struct traits<double> {
// scalar type
typedef double T;
typedef T S;

static constexpr T zero = 0.;
static constexpr dpct::library_data_t cuda_data_type =
dpct::library_data_t::real_double;

inline static S abs(T val) { return fabs(val); }

template <typename RNG> inline static T rand(RNG &gen) { return (S)gen(); }

inline static T add(T a, T b) { return a + b; }

inline static T mul(T v, double f) { return v * f; }
};

template <> struct traits<sycl::float2> {
// scalar type
typedef float S;
typedef sycl::float2 T;

static constexpr T zero = {0.f, 0.f};
static constexpr dpct::library_data_t cuda_data_type =
dpct::library_data_t::complex_float;

inline static S abs(T val) { return dpct::cabs<float>(val); }

template <typename RNG> inline static T rand(RNG &gen) {
return sycl::float2((S)gen(), (S)gen());
}

inline static T add(T a, T b) { return a + b; }
inline static T add(T a, S b) { return a + sycl::float2(b, 0.f); }

inline static T mul(T v, double f) {
return sycl::float2(v.x() * f, v.y() * f);
}
};

template <> struct traits<sycl::double2> {
// scalar type
typedef double S;
typedef sycl::double2 T;

static constexpr T zero = {0., 0.};
static constexpr dpct::library_data_t cuda_data_type =
dpct::library_data_t::complex_double;

inline static S abs(T val) { return dpct::cabs<double>(val); }

template <typename RNG> inline static T rand(RNG &gen) {
return sycl::double2((S)gen(), (S)gen());
}

inline static T add(T a, T b) { return a + b; }
inline static T add(T a, S b) { return a + sycl::double2(b, 0.); }

inline static T mul(T v, double f) {
return sycl::double2(v.x() * f, v.y() * f);
}
};

template <typename T> void print_matrix(const int &m, const int &n, const T *A, const int &lda);

template <> void print_matrix(const int &m, const int &n, const float *A, const int &lda) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
std::printf("%0.2f ", A[j * lda + i]);
}
std::printf("\n");
}
}

template <> void print_matrix(const int &m, const int &n, const double *A, const int &lda) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
std::printf("%0.2f ", A[j * lda + i]);
}
std::printf("\n");
}
}

template <>
void print_matrix(const int &m, const int &n, const sycl::float2 *A,
const int &lda) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
std::printf("%0.2f + %0.2fj ", A[j * lda + i].x(),
A[j * lda + i].y());
}
std::printf("\n");
}
}

template <>
void print_matrix(const int &m, const int &n, const sycl::double2 *A,
const int &lda) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
std::printf("%0.2f + %0.2fj ", A[j * lda + i].x(),
A[j * lda + i].y());
}
std::printf("\n");
}
}

template <typename T> void print_vector(const int &m, const T *A);

template <> void print_vector(const int &m, const float *A) {
for (int i = 0; i < m; i++) {
std::printf("%0.2f ", A[i]);
}
std::printf("\n");
}

template <> void print_vector(const int &m, const double *A) {
for (int i = 0; i < m; i++) {
std::printf("%0.2f ", A[i]);
}
std::printf("\n");
}

template <> void print_vector(const int &m, const sycl::float2 *A) {
for (int i = 0; i < m; i++) {
std::printf("%0.2f + %0.2fj ", A[i].x(), A[i].y());
}
std::printf("\n");
}

template <> void print_vector(const int &m, const sycl::double2 *A) {
for (int i = 0; i < m; i++) {
std::printf("%0.2f + %0.2fj ", A[i].x(), A[i].y());
}
std::printf("\n");
}

template <typename T> void generate_random_matrix(int m, int n, T **A, int *lda) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<typename traits<T>::S> dis(-1.0, 1.0);
auto rand_gen = std::bind(dis, gen);

*lda = n;

size_t matrix_mem_size = static_cast<size_t>(*lda * m * sizeof(T));
// suppress gcc 7 size warning
if (matrix_mem_size <= PTRDIFF_MAX)
*A = (T *)malloc(matrix_mem_size);
else
throw std::runtime_error("Memory allocation size is too large");

if (*A == NULL)
throw std::runtime_error("Unable to allocate host matrix");

// random matrix and accumulate row sums
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
T *A_row = (*A) + *lda * i;
A_row[j] = traits<T>::rand(rand_gen);
}
}
}

// Makes matrix A of size mxn and leading dimension lda diagonal dominant
template <typename T> void make_diag_dominant_matrix(int m, int n, T *A, int lda) {
for (int i = 0; i < std::min(m, n); ++i) {
T *A_row = A + lda * i;
auto row_sum = traits<typename traits<T>::S>::zero;
for (int j = 0; j < n; ++j) {
row_sum += traits<T>::abs(A_row[j]);
}
A_row[i] = traits<T>::add(A_row[i], row_sum);
}
}

// Returns cudaDataType value as defined in library_types.h for the string
// containing type name
dpct::library_data_t get_cuda_library_type(std::string type_string) {
if (type_string.compare("CUDA_R_16F") == 0)
return dpct::library_data_t::real_half;
else if (type_string.compare("CUDA_C_16F") == 0)
return dpct::library_data_t::complex_half;
else if (type_string.compare("CUDA_R_32F") == 0)
return dpct::library_data_t::real_float;
else if (type_string.compare("CUDA_C_32F") == 0)
return dpct::library_data_t::complex_float;
else if (type_string.compare("CUDA_R_64F") == 0)
return dpct::library_data_t::real_double;
else if (type_string.compare("CUDA_C_64F") == 0)
return dpct::library_data_t::complex_double;
else if (type_string.compare("CUDA_R_8I") == 0)
return dpct::library_data_t::real_int8;
else if (type_string.compare("CUDA_C_8I") == 0)
return dpct::library_data_t::complex_int8;
else if (type_string.compare("CUDA_R_8U") == 0)
return dpct::library_data_t::real_uint8;
else if (type_string.compare("CUDA_C_8U") == 0)
return dpct::library_data_t::complex_uint8;
else if (type_string.compare("CUDA_R_32I") == 0)
return dpct::library_data_t::real_int32;
else if (type_string.compare("CUDA_C_32I") == 0)
return dpct::library_data_t::complex_int32;
else if (type_string.compare("CUDA_R_32U") == 0)
return dpct::library_data_t::real_uint32;
else if (type_string.compare("CUDA_C_32U") == 0)
return dpct::library_data_t::complex_uint32;
else
throw std::runtime_error("Unknown CUDA datatype");
}
Loading