Closed
Description
Whether np.datetime64('NaT')
is printed as NaT
or NaN
depends on other types present in the column. This is consistent with pd.NaT
, whose display also depends on other types. But when all the other scalars are None
, pd.NaT
and None
are both printed as NaT
, whereas in a column of np.datetime64('NaT')
and None
, it depends on the order of the entries (last two lines).
In [44]: pd.DataFrame([[np.datetime64('NaT')], [None]])
Out[44]:
0
0 NaN
1 None
In [45]: pd.DataFrame([[pd.NaT], [None]])
Out[45]:
0
0 NaT
1 NaT
In [46]: pd.DataFrame([[np.datetime64('NaT')], [pd.NaT]])
Out[46]:
0
0 NaT
1 NaT
In [47]: pd.DataFrame([[pd.NaT], [np.datetime64('NaT')]])
Out[47]:
0
0 NaT
1 NaT
In [81]: pd.DataFrame([[None],[np.datetime64('NaT')]])
Out[81]:
0
0 NaT
1 NaT
In [82]: pd.DataFrame([[np.datetime64('NaT')],[None]])
Out[82]:
0
0 NaN
1 None
In [86]: pd.DataFrame([[None],[np.datetime64('NaT')]]).dtypes
Out[86]:
0 datetime64[ns]
dtype: object
In [87]: pd.DataFrame([[np.datetime64('NaT')],[None]]).dtypes
Out[87]:
0 object
dtype: object