Closed
Description
When doing linear regression and encoding categorical variables, perfect collinearity can be a problem. To get around this, the suggested approach is to use n-1 columns. It would be useful if pd.get_dummies()
had a boolean parameter that returns n-1 for each categorical column that gets encoded.
Example:
>>> df
Account Network Device
0 Account1 Search Smartphone
1 Account1 Display Tablet
2 Account2 Search Smartphone
3 Account3 Display Smartphone
4 Account2 Search Tablet
5 Account3 Search Smartphone
>>> pd.get_dummies(df)
Account_Account1 Account_Account2 Account_Account3 Network_Display \
0 1 0 0 0
1 1 0 0 1
2 0 1 0 0
3 0 0 1 1
4 0 1 0 0
5 0 0 1 0
Network_Search Device_Smartphone Device_Tablet
0 1 1 0
1 0 0 1
2 1 1 0
3 0 1 0
4 1 0 1
5 1 1 0
Instead, I'd like to have some parameter such as drop_first=True
in get_dummies()
and it does something like this:
>>> new_df = pd.DataFrame(index=df.index)
>>> for i in df:
new_df = new_df.join(pd.get_dummies(df[i]).iloc[:, 1:])
>>> new_df
Account2 Account3 Search Tablet
0 0 0 1 0
1 0 0 0 1
2 1 0 1 0
3 0 1 0 0
4 1 0 1 1
5 0 1 1 0
Sources
http://fastml.com/converting-categorical-data-into-numbers-with-pandas-and-scikit-learn/
http://stackoverflow.com/questions/31498390/how-to-get-pandas-get-dummies-to-emit-n-1-variables-to-avoid-co-lineraity
http://dss.princeton.edu/online_help/analysis/dummy_variables.htm