Description
Code that triggers ValueError
The combination of sort=False
and a missing category in the data causes the bug - see below
First off, see this notebook which showcases the bug nicely: github.com/mpschr/pandas_missing_cat_bug
random.seed(88)
df = pd.DataFrame(np.random.randint(0,100,size=(100, 4)), columns=list('ABCD'))
chromosomes = [str(x) for x in range(1,23)] + ["X","Y"]
df.insert(0, 'chromosomes', sorted([random.choice(chromosomes) for x in range(100)]))
df.chromosomes = df.chromosomes.astype('category', categories=chromosomes, ordered=True)
for c, g in df.query("chromosomes != '1'").groupby('chromosomes', sort=False):
print(c, g.chromosomes.cat.categories, g.shape)
/home/michi/bin/anaconda3/lib/python3.4/site-packages/pandas/core/groupby.py in __init__(self, index, grouper, obj, name, level, sort, in_axis)
2181 cat = self.grouper.unique()
2182 self.grouper = self.grouper.reorder_categories(
-> 2183 cat.categories)
2184
2185 # we make a CategoricalIndex out of the cat grouper
/home/michi/bin/anaconda3/lib/python3.4/site-packages/pandas/core/categorical.py in reorder_categories(self, new_categories, ordered, inplace)
756 """
757 if set(self._categories) != set(new_categories):
--> 758 raise ValueError("items in new_categories are not the same as in "
759 "old categories")
760 return self.set_categories(new_categories, ordered=ordered,
ValueError: items in new_categories are not the same as in old categories
Summaries of the scenarios where this bug appears:
Bug scenarios with ordered categories:
- Default (
sort = True
): No error chromosome 1
filtered out andsort=True
: No errorchromosome 1
filtered out andsort=False
: Errorsort = False
: Error
Bug scenarios without ordered categories:
the 4 scenarios:
- Default (
sort = True
): No error chromosome 1
filtered out andsort=True
: No errorsort = False
: No errorchromosome 1
filtered out andsort=False
: Error
Expected Output
Not an error, but this:
1 Index(['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13',
'14', '15', '16', '17', '18', '19', '20', '21', '22', 'X', 'Y'],
dtype='object') (7, 5)
output of pd.show_versions()
pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.4.4.final.0
python-bits: 64
OS: Linux
OS-release: 3.13.0-34-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
pandas: 0.18.1
nose: 1.3.4
pip: 8.1.1
setuptools: 20.7.0
Cython: 0.22
numpy: 1.10.4
scipy: 0.16.0
statsmodels: 0.6.0.dev-9ce1605
xarray: None
IPython: 4.1.2
sphinx: 1.2.3
patsy: 0.3.0
dateutil: 2.5.2
pytz: 2016.3
blosc: None
bottleneck: None
tables: 3.1.1
numexpr: 2.4.4
matplotlib: 1.4.3
openpyxl: 1.8.5
xlrd: 0.9.3
xlwt: None
xlsxwriter: 0.6.7
lxml: 3.4.2
bs4: 4.3.2
html5lib: None
httplib2: None
apiclient: None
sqlalchemy: 0.9.9
pymysql: None
psycopg2: None
jinja2: 2.8
boto: 2.36.0
pandas_datareader: None