Closed
Description
Transform
with idxmax
return wrong output - floats instead datetimes
Sample:
rng = pd.date_range('1/1/2011', periods=15, freq='D')
np.random.seed(4)
stocks = pd.DataFrame({
'price':(np.random.randn(15).cumsum() + 10) },index = rng)
stocks['week_id'] = pd.to_datetime(stocks.index).week #used for the groupby
print (stocks)
price week_id
2011-01-01 10.050562 52
2011-01-02 10.550513 52
2011-01-03 9.554604 1
2011-01-04 10.248203 1
2011-01-05 9.829901 1
2011-01-06 8.245324 1
2011-01-07 7.597617 1
2011-01-08 8.196192 1
2011-01-09 8.528442 1
2011-01-10 7.380966 2
2011-01-11 7.999635 2
2011-01-12 7.911648 2
2011-01-13 8.336721 2
2011-01-14 8.668974 2
2011-01-15 7.512158 2
print (stocks.groupby(stocks['week_id'])['price'].transform('idxmax'))
2011-01-01 1.293926e+18
2011-01-02 1.293926e+18
2011-01-03 1.294099e+18
2011-01-04 1.294099e+18
2011-01-05 1.294099e+18
2011-01-06 1.294099e+18
2011-01-07 1.294099e+18
2011-01-08 1.294099e+18
2011-01-09 1.294099e+18
2011-01-10 1.294963e+18
2011-01-11 1.294963e+18
2011-01-12 1.294963e+18
2011-01-13 1.294963e+18
2011-01-14 1.294963e+18
2011-01-15 1.294963e+18
Freq: D, Name: price, dtype: float64
print (stocks.groupby(stocks['week_id'])['price'].idxmax())
week_id
1 2011-01-04
2 2011-01-14
52 2011-01-02
Name: price, dtype: datetime64[ns]
print (pd.show_versions())
INSTALLED VERSIONS
------------------
commit: None
python: 3.5.1.final.0
python-bits: 64
OS: Windows
OS-release: 7
machine: AMD64
processor: Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
byteorder: little
LC_ALL: None
LANG: sk_SK
LOCALE: None.None
pandas: 0.19.2+0.g825876c.dirty
nose: 1.3.7
pip: 8.1.1
setuptools: 20.3
Cython: 0.23.4
numpy: 1.11.0
scipy: 0.17.0
statsmodels: 0.6.1
xarray: None
IPython: 4.1.2
sphinx: 1.3.1
patsy: 0.4.0
dateutil: 2.5.1
pytz: 2016.2
blosc: None
bottleneck: 1.0.0
tables: 3.2.2
numexpr: 2.5.1
matplotlib: 1.5.1
openpyxl: 2.3.2
xlrd: 0.9.4
xlwt: 1.0.0
xlsxwriter: 0.8.4
lxml: 3.6.0
bs4: 4.4.1
html5lib: 0.999
httplib2: None
apiclient: None
sqlalchemy: 1.0.12
pymysql: None
psycopg2: None
jinja2: 2.8
boto: 2.39.0
pandas_datareader: 0.2.1
None