Description
Performing simple arithmetic operations between two DataFrames
that have a MultiIndex on the columns is disabled because the join on level is deemed ambiguous. This is not the case when the labels in both DataFrame
s are unique and there is a unique mapping between the two and the MultiIndex levels are uniquely labeled.
First, let's just construct the DataFrame.
>>> data = {
('b', 'x', ''): {0: 0.5, 1: 0.59999999999999998, 2: 0.69999999999999996},
('b', 'y', ''): {0: -0.25, 1: -0.26000000000000001, 2: 0.27000000000000002},
('b', 'z', ''): {0: 0.29999999999999999, 1: 0.40000000000000002, 2: -0.69999999999999996},
('v', 'x', 'a'): {0: 125.0, 1: 250.0, 2: 375.0},
('v', 'x', 'p1'): {0: 100.0, 1: 200.0, 2: 300.0},
('v', 'x', 'p2'): {0: 150.0, 1: 300.0, 2: 450.0},
('v', 'y', 'a'): {0: 250.0, 1: 375.0, 2: 750.0},
('v', 'y', 'p1'): {0: 200.0, 1: 300.0, 2: 600.0},
('v', 'y', 'p2'): {0: 300.0, 1: 450.0, 2: 900.0},
('v', 'z', 'a'): {0: 500.0, 1: 750.0, 2: 1000.0},
('v', 'z', 'p1'): {0: 400.0, 1: 600.0, 2: 800.0},
('v', 'z', 'p2'): {0: 600.0, 1: 900.0, 2: 1200.0}}
>>> data = pd.DataFrame.from_dict(data, orient="columns").sort_index(axis=1)
>>> data.columns.names = ["Measurement", "Component", "Species"]
>>> data.T
0 1 2
Measurement Component Species
b x 0.50 0.60 0.70
y -0.25 -0.26 0.27
z 0.30 0.40 -0.70
v x a 125.00 250.00 375.00
p1 100.00 200.00 300.00
p2 150.00 300.00 450.00
y a 250.00 375.00 750.00
p1 200.00 300.00 600.00
p2 300.00 450.00 900.00
z a 500.00 750.00 1000.00
p1 400.00 600.00 800.00
p2 600.00 900.00 1200.00
In the case that there is a unique mapping between the two DataFrames
such that there is a single level over which to broadcast, a TypeError
is currently raised.
>>> mag = data.pow(2).sum(axis=1, level=["Measurement", "Species"]).pipe(np.sqrt)
>>> mag
Measurement b v
Species a p1 p2
0 0.634429 572.821962 458.257569 687.386354
1 0.766551 875.000000 700.000000 1050.000000
2 1.026109 1305.038314 1044.030651 1566.045976
>>> data.divide(mag, axis=1, level="Component").T
Traceback (most recent call last)
...
TypeError: Join on level between two MultiIndex objects is ambiguous
This solution provides a simple tool for many users, removing the necessity of a common for loop and manual index selection. The expected output would be something like
>>> data.divide(mag, axis=1, level="Component").T
0 1 2
Measurement Component Species
b x 0.788110 0.782727 0.682189
y -0.394055 -0.339182 0.263130
z 0.472866 0.521818 -0.682189
v x a 0.218218 0.285714 0.287348
p1 0.218218 0.285714 0.287348
p2 0.218218 0.285714 0.287348
y a 0.436436 0.428571 0.574696
p1 0.436436 0.428571 0.574696
p2 0.436436 0.428571 0.574696
z a 0.872872 0.857143 0.766261
p1 0.872872 0.857143 0.766261
p2 0.872872 0.857143 0.766261
Output of pd.show_versions()
pandas: 0.18.1
nose: None
pip: 8.1.2
setuptools: 26.1.1
Cython: None
numpy: 1.11.1
scipy: 0.18.0
statsmodels: None
xarray: None
IPython: 5.1.0
sphinx: None
patsy: 0.4.1
dateutil: 2.5.3
pytz: 2016.6.1
blosc: None
bottleneck: None
tables: 3.2.3.1
numexpr: 2.6.1
matplotlib: 1.5.1
openpyxl: None
xlrd: 1.0.0
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: None
httplib2: None
apiclient: None
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.8
boto: None
pandas_datareader: None