Description
Code Sample, a copy-pastable example if possible
import pandas as pd
import numpy as np
dfMain = pd.DataFrame({
'a': [0, 1, np.NAN, 3, 4],
'b': [np.NaN, np.NaN, np.NaN, 3, 4],
'c': [0 , 1, 2, 3, np.NaN]})
for col in dfMain:
start = dfMain[col].first_valid_index()
end = dfMain[col].last_valid_index()
dfMain.loc[start:end, col] = dfMain.loc[start:end, col].interpolate()
print(dfMain)
Problem description
It would be very nice to have a limit_direction='inside' that would make interpolate only fill values that are surrounded (both in front and behind) with valid values.
This would allow an interpolate to only fill missing values in a series and not extend the series beyond its original limits. The key here is that it is sometimes important to maintain the original range of a series, but still fill in the gaps.
The example shows a simple DataFrame with an 'inside' interpolation.
Expected Output
a b c
0 0.0 NaN 0.0
1 1.0 NaN 1.0
2 2.0 NaN 2.0
3 3.0 3.0 3.0
4 4.0 4.0 NaN
Output of pd.show_versions()
pandas: 0.19.2
nose: 1.3.7
pip: 9.0.1
setuptools: 34.4.1
Cython: 0.25.2
numpy: 1.12.1
scipy: 0.18.1
statsmodels: 0.6.1
xarray: None
IPython: 5.1.0
sphinx: 1.5.1
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2016.10
blosc: None
bottleneck: 1.2.0
tables: 3.3.0
numexpr: 2.6.1
matplotlib: 2.0.0
openpyxl: 2.4.1
xlrd: 1.0.0
xlwt: 1.2.0
xlsxwriter: 0.9.6
lxml: 3.7.2
bs4: 4.5.3
html5lib: None
httplib2: None
apiclient: None
sqlalchemy: 1.1.5
pymysql: None
psycopg2: None
jinja2: 2.9.4
boto: 2.45.0
pandas_datareader: 0.2.1
None