Description
Code Sample, a copy-pastable example if possible
In[1]: df = pd.DataFrame({'cat':pd.Categorical(['a','b','c']),
'obj':['d', 'e', 'f'],
'num': [1,2,3],
'bool':[True,False,True],
'dt':[pd.Timestamp('2010-1-1'), pd.Timestamp('2010-2-1'), pd.Timestamp('2010-3-1')]})
In [2]: df.describe(include=['O'])
Out[2]:
obj
count 3
unique 3
top f
freq 1
Problem description
For me it makes sense that when using describe
on object
data types, categorical data types should be included as well in the output. The docstrings even use the word categorical: "To limit it instead to categorical objects submit the numpy.object
data type." It might make sense to add booleans and datetimes as well.
Expected Output
The result should mimic the output of df.describe(include=['O', 'category'])
cat obj
count 3 3
unique 3 3
top c f
freq 1 1
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.6.1.final.0
python-bits: 64
OS: Darwin
OS-release: 15.6.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.20.2
pytest: 3.0.7
pip: 9.0.1
setuptools: 35.0.2
Cython: 0.25.2
numpy: 1.13.0
scipy: 0.19.0
xarray: None
IPython: 6.0.0
sphinx: 1.5.5
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: 1.2.0
tables: 3.4.2
numexpr: 2.6.2
feather: None
matplotlib: 2.0.2
openpyxl: 2.4.7
xlrd: 1.0.0
xlwt: 1.2.0
xlsxwriter: 0.9.6
lxml: 3.7.3
bs4: 4.6.0
html5lib: 0.999999999
sqlalchemy: 1.1.9
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: 0.3.0.post