Closed
Description
Code Sample, a copy-pastable example if possible
df = pd.DataFrame({'a': [1, 3, 5, 6], 'b': [2, 4, 12, 21]})
df.style.render(uuid='test')
## or same with df.style.set_uuid('test').render()
<style type="text/css" >\n</style> \n<table id="T_test" > \n<thead> <tr> \n <th class="blank level0" ></th> \n <th class="col_heading level0 col0" >a</th> \n <th class="col_heading level0 col1" >b</th> \n </tr></thead> \n<tbody> <tr> \n <th id="T_test" class="row_heading level0 row0" >0</th> \n <td id="T_testrow0_col0" class="data row0 col0" >1</td> \n <td id="T_testrow0_col1" class="data row0 col1" >2</td> \n </tr> <tr> \n <th id="T_test" class="row_heading level0 row1" >1</th> \n <td id="T_testrow1_col0" class="data row1 col0" >3</td> \n <td id="T_testrow1_col1" class="data row1 col1" >4</td> \n </tr> <tr> \n <th id="T_test" class="row_heading level0 row2" >2</th> \n <td id="T_testrow2_col0" class="data row2 col0" >5</td> \n <td id="T_testrow2_col1" class="data row2 col1" >12</td> \n </tr> <tr> \n <th id="T_test" class="row_heading level0 row3" >3</th> \n <td id="T_testrow3_col0" class="data row3 col0" >6</td> \n <td id="T_testrow3_col1" class="data row3 col1" >21</td> \n </tr></tbody> \n</table>
Problem description
I am told that a css id should be unique and therefore, when <table id="T_test" >
and <th id="T_test"...>
in the above HTML output have the same ids, this breaks my css and causes the settings on my ids to be ignored.
Output of pd.show_versions()
INSTALLED VERSIONS
------------------
commit: None
python: 3.5.2.final.0
python-bits: 64
OS: Linux
OS-release: 3.16.0-4-amd64
machine: x86_64
processor:
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8
LOCALE: en_GB.UTF-8
pandas: 0.20.2
pytest: 2.9.2
pip: 9.0.1
setuptools: 27.2.0
Cython: 0.24.1
numpy: 1.12.1
scipy: 0.19.0
xarray: None
IPython: 5.1.0
sphinx: 1.4.6
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: 1.2.0
tables: 3.4.2
numexpr: 2.6.2
feather: None
matplotlib: 2.0.2
openpyxl: 2.3.2
xlrd: 1.0.0
xlwt: 1.1.2
xlsxwriter: 0.9.3
lxml: 3.6.4
bs4: 4.5.1
html5lib: 0.999999999
sqlalchemy: 1.0.13
pymysql: 0.7.9.None
psycopg2: None
jinja2: 2.8
s3fs: None
pandas_gbq: None
pandas_datareader: None