Description
Code Sample, a copy-pastable example if possible
# Define dataframe
tempDF1 = pd.DataFrame({'c1':[1,2,3,4,5],
'c2':[True,True,False,False,True]})
# Select part of original dataframe
tempDF2 = tempDF1.loc[tempDF1['c2']==True,:].copy()
print('Original dataframe')
print(tempDF1)
print('\nSelection of dataframe')
print(tempDF2)
# Make some changes to selection
tempDF2.loc[:,'c1'] = tempDF2.loc[:,'c1'] + 100
tempDF2.iloc[2,0] = np.nan
# Update original dataframe with new values
tempDF1.update(tempDF2,overwrite=True)
print('\nSelection of dataframe - with changes')
print(tempDF2)
print('\nUpdated original dataframe')
print(tempDF1)
Problem description
DataFrame.update() function fails to update a dataframe with new NaN values. However, non-NaN values are updated to original dataframe with no issues (except the dtype of the dataframe is altered in the update process, namely int64 changed to float64).
Expected Output
Expected output would be
c1 c2
0 101 True
1 102 True
2 3 False
3 4 False
4 NaN True
However, actual output is:
c1 c2
0 101.0 True
1 102.0 True
2 3.0 False
3 4.0 False
4 5.0 True
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.4.6.final.0
python-bits: 64
OS: Darwin
OS-release: 15.6.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8
LOCALE: en_GB.UTF-8
pandas: 0.20.2
pytest: None
pip: 9.0.1
setuptools: 34.3.3
Cython: None
numpy: 1.13.0
scipy: None
xarray: None
IPython: 5.3.0
sphinx: None
patsy: None
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: None
openpyxl: 2.4.7
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 0.999999999
sqlalchemy: None
pymysql: 0.7.11.None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: None