Description
Code Sample, a copy-pastable example if possible
>>> df = pd.DataFrame({'A':['a', None], 'B':['a', 'b']})
>>> df.min()
Series([], dtype: float64)
>>> df[['B', 'A']].min()
B a
dtype: object
Problem description
Both DataFrames should return the same thing. Order should not matter here. I suppose this is happening based on whether or not the first column has any missing values?
This happens for the other aggregation methods max
and sum
Expected Output
For consistency, both should output the same thing.
Output of pd.show_versions()
pandas: 0.20.2
pytest: 3.0.7
pip: 9.0.1
setuptools: 35.0.2
Cython: 0.25.2
numpy: 1.13.0
scipy: 0.19.0
xarray: None
IPython: 6.0.0
sphinx: 1.5.5
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: 1.2.0
tables: 3.4.2
numexpr: 2.6.2
feather: None
matplotlib: 2.0.2
openpyxl: 2.4.7
xlrd: 1.0.0
xlwt: 1.2.0
xlsxwriter: 0.9.6
lxml: 3.7.3
bs4: 4.6.0
html5lib: 0.999999999
sqlalchemy: 1.1.9
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: 0.3.0.post