Skip to content

read_csv returns different float values for same number #17154

Closed
@chrisyeh96

Description

@chrisyeh96

Code Sample, a copy-pastable example if possible

test.csv

-15.361
-15.361000
>>> import pandas as pd
>>> x = pd.read_csv('test.csv', header=None)
>>> x.loc[0, 0] == x.loc[1, 0]
False

Problem description / Expected output

The expected output of the code above is

>>> x.loc[0, 0] == x.loc[1, 0]
True

We should expect both -15.361 and -15.361000 to be converted to the same np.float64 representation. However, they are converted to different float values, differing in exactly the last bit of their floating point representation. For some reason, -15.361 gets converted incorrectly to 0xC02EB8D4FDF3B645 whereas -15.361000 is correctly to 0xC02EB8D4FDF3B646.

For completeness, here are some more comparisons
x.loc[1, 0] is equal (==) to np.float64('-15.361'), np.float64('-15.361000'), and float('-15.361000').
x.loc[0, 0] is not equal to any of those.

Output of pd.show_versions()

[paste the output of pd.show_versions() here below this line]

INSTALLED VERSIONS

commit: None
python: 3.5.3.final.0
python-bits: 64
OS: Linux
OS-release: 3.13.0-73-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8

pandas: 0.20.3
pytest: None
pip: 9.0.1
setuptools: 36.2.4
Cython: None
numpy: 1.13.1
scipy: 0.19.1
xarray: None
IPython: None
sphinx: None
patsy: None
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: 2.0.2
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 0.9999999
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: None
s3fs: None
pandas_gbq: None
pandas_datareader: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    IO CSVread_csv, to_csv

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions