Description
Code Sample, a copy-pastable example if possible
test.csv
-15.361
-15.361000
>>> import pandas as pd
>>> x = pd.read_csv('test.csv', header=None)
>>> x.loc[0, 0] == x.loc[1, 0]
False
Problem description / Expected output
The expected output of the code above is
>>> x.loc[0, 0] == x.loc[1, 0]
True
We should expect both -15.361
and -15.361000
to be converted to the same np.float64
representation. However, they are converted to different float values, differing in exactly the last bit of their floating point representation. For some reason, -15.361
gets converted incorrectly to 0xC02EB8D4FDF3B645
whereas -15.361000
is correctly to 0xC02EB8D4FDF3B646
.
For completeness, here are some more comparisons
x.loc[1, 0]
is equal (==
) to np.float64('-15.361')
, np.float64('-15.361000')
, and float('-15.361000')
.
x.loc[0, 0]
is not equal to any of those.
Output of pd.show_versions()
[paste the output of pd.show_versions()
here below this line]
INSTALLED VERSIONS
commit: None
python: 3.5.3.final.0
python-bits: 64
OS: Linux
OS-release: 3.13.0-73-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.20.3
pytest: None
pip: 9.0.1
setuptools: 36.2.4
Cython: None
numpy: 1.13.1
scipy: 0.19.1
xarray: None
IPython: None
sphinx: None
patsy: None
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: 2.0.2
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 0.9999999
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: None
s3fs: None
pandas_gbq: None
pandas_datareader: None