Description
Code Sample, a copy-pastable example if possible
>>> df = pd.DataFrame({
'A_1': [1.0, 2.0],
'A_2': [3.0, 4.0],
'X': ['X1', 'X2']})
A_1 A_2 X
0 1.0 3.0 X1
1 2.0 4.0 X2
>>> df2 = pd.wide_to_long(df, stubnames='A', i='X', j='num', sep='_')
A
X num
X1 1 1.0
X2 1 2.0
X1 2 3.0
X2 2 4.0
>>> df2.reset_index().dtypes
X object
num object
A float64
dtype: object
Problem description
wide_to_long
should attempt to coerce integer strings to ints. I have a pull request ready for this.
Additionally, I'd think it might be good to deprecate wide_to_long
and lreshape
in favor of expanded melt
functionality.
Expected Output
>>> df2.reset_index().dtypes
X object
num int64
A float64
dtype: object
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.6.1.final.0
python-bits: 64
OS: Darwin
OS-release: 15.6.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.20.3
pytest: 3.0.7
pip: 9.0.1
setuptools: 35.0.2
Cython: 0.25.2
numpy: 1.13.1
scipy: 0.19.0
xarray: None
IPython: 6.0.0
sphinx: 1.5.5
patsy: 0.4.1
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: 1.2.0
tables: 3.4.2
numexpr: 2.6.2
feather: None
matplotlib: 2.0.2
openpyxl: 2.4.7
xlrd: 1.0.0
xlwt: 1.2.0
xlsxwriter: 0.9.6
lxml: 3.7.3
bs4: 4.6.0
html5lib: 0.9999999
sqlalchemy: 1.1.9
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: 0.3.0.post