Skip to content

wide_to_long does not convert integer suffixes to int #17627

Closed
@tdpetrou

Description

@tdpetrou

Code Sample, a copy-pastable example if possible

>>> df = pd.DataFrame({
                'A_1': [1.0, 2.0],
                'A_2': [3.0, 4.0],
                'X': ['X1', 'X2']})

   A_1  A_2   X
0  1.0  3.0  X1
1  2.0  4.0  X2

>>> df2 = pd.wide_to_long(df, stubnames='A', i='X', j='num', sep='_')
          A
X  num     
X1 1    1.0
X2 1    2.0
X1 2    3.0
X2 2    4.0

>>> df2.reset_index().dtypes
X       object
num     object
A      float64
dtype: object

Problem description

wide_to_long should attempt to coerce integer strings to ints. I have a pull request ready for this.

Additionally, I'd think it might be good to deprecate wide_to_long and lreshape in favor of expanded melt functionality.

Expected Output

>>> df2.reset_index().dtypes
X       object
num     int64
A      float64
dtype: object

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.6.1.final.0
python-bits: 64
OS: Darwin
OS-release: 15.6.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8

pandas: 0.20.3
pytest: 3.0.7
pip: 9.0.1
setuptools: 35.0.2
Cython: 0.25.2
numpy: 1.13.1
scipy: 0.19.0
xarray: None
IPython: 6.0.0
sphinx: 1.5.5
patsy: 0.4.1
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: 1.2.0
tables: 3.4.2
numexpr: 2.6.2
feather: None
matplotlib: 2.0.2
openpyxl: 2.4.7
xlrd: 1.0.0
xlwt: 1.2.0
xlsxwriter: 0.9.6
lxml: 3.7.3
bs4: 4.6.0
html5lib: 0.9999999
sqlalchemy: 1.1.9
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: 0.3.0.post

Metadata

Metadata

Assignees

No one assigned

    Labels

    Compatpandas objects compatability with Numpy or Python functionsDtype ConversionsUnexpected or buggy dtype conversions

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions