Skip to content

API: support "unique=True" in MultiIndex.get_level_values() #17896

Closed
@toobaz

Description

@toobaz

Code Sample, a copy-pastable example if possible

I often find my self doing

In [2]: df = pd.Series(index=pd.MultiIndex.from_product([['A', 'B'], ['a', 'b']]))

In [3]: df.index.get_level_values(0).unique()
Out[3]: Index(['A', 'B'], dtype='object')

Problem description

The above is very inefficient, because first a Series is built which includes a copy of the entire level (possibly using way more memory than the index itself), and only then duplicates are stripped. Other people on SO have faced the same problem, and this is also blocking a fix I wrote for #17845.

I'm pushing a simple PR in seconds.

Expected Output

Same as above, but in an efficient way.

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.5.3.final.0
python-bits: 64
OS: Linux
OS-release: 4.9.0-3-amd64
machine: x86_64
processor:
byteorder: little
LC_ALL: None
LANG: it_IT.UTF-8
LOCALE: it_IT.UTF-8

pandas: 0.21.0rc1+19.gb15d92d14
pytest: 3.0.6
pip: 9.0.1
setuptools: None
Cython: 0.25.2
numpy: 1.12.1
scipy: 0.19.0
pyarrow: None
xarray: None
IPython: 5.1.0.dev
sphinx: 1.5.6
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: 1.2.1
tables: 3.3.0
numexpr: 2.6.1
feather: 0.3.1
matplotlib: 2.0.0
openpyxl: None
xlrd: 1.0.0
xlwt: 1.1.2
xlsxwriter: 0.9.6
lxml: None
bs4: 4.5.3
html5lib: 0.999999999
sqlalchemy: 1.0.15
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: 0.2.1

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions