Description
Code Sample
K = 100000000
df = pd.DataFrame(list(range(K)))
mask = df[0] > K/2
%timeit mask.mean()
%timeit mask.sum()
Problem description
Doing "sum" and "mean" on boolean pandas masks is 10x different! This clearly should not be the case, given these are identical operations.
Expected Output
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.6.1.final.0
python-bits: 64
OS: Darwin
OS-release: 16.7.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.20.1
pytest: 3.0.7
pip: 9.0.1
setuptools: 33.1.1
Cython: 0.25.2
numpy: 1.12.0
scipy: 0.19.0
xarray: None
IPython: 5.3.0
sphinx: 1.5.6
patsy: 0.4.1
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: 1.2.1
tables: 3.3.0
numexpr: 2.6.2
feather: None
matplotlib: 2.0.2
openpyxl: 2.4.7
xlrd: 1.0.0
xlwt: 1.2.0
xlsxwriter: 0.9.6
lxml: 3.7.3
bs4: 4.6.0
html5lib: 0.9999999
sqlalchemy: 1.1.9
pymysql: None
psycopg2: 2.7.3 (dt dec pq3 ext lo64)
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: None