Skip to content

Subclass pandas DataFrame with required argument #19300

Closed
@hlums

Description

@hlums
import pandas as pd
class MyDataFrame(pd.DataFrame):

    @property
    def _constructor(self):
        return MyDataFrame

    _metadata = ['new_property']

    def __init__(self, data, new_property, index=None, columns=None, dtype=None, copy=True):

        super(MyDataFrame, self).__init__(data=data,
                                          index=index,
                                          columns=columns,
                                          dtype=dtype,
                                          copy=copy)
        self.new_property = new_property

data1 = {'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [15, 25, 30], 'd': [1, 1, 2]}
df1 = MyDataFrame(data1, new_property='value')
df1[['a', 'b']]

Problem description

I'm working on a new data structure that subclasses pandas DataFrame. I want to enforce my new data structure to have new_property, so that it can be processed safely later on. However, I'm running into error when using my new data structure, because the constructor gets called by some internal pandas function without the required property.
The code above produces the following error.

Traceback (most recent call last):
File "C:\ProgramData\Anaconda3\lib\site-
packages\IPython\core\interactiveshell.py", line 2881, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "", line 1, in
df1[['a', 'b']]
File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\frame.py", line 2053, in getitem
return self._getitem_array(key)
File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\frame.py", line 2098, in _getitem_array
return self.take(indexer, axis=1, convert=True)
File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\generic.py", line 1670, in take
result = self._constructor(new_data).finalize(self)
TypeError: init() missing 1 required positional argument: 'new_property'

Expected Output

I expect the slicing happen without any error. Is there a fix to this or an alternative way to design this to enforce my new data structure to have new_property?

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.6.0.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 61 Stepping 4, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
pandas: 0.19.2
nose: 1.3.7
pip: 9.0.1
setuptools: 27.2.0
Cython: 0.25.2
numpy: 1.11.3
scipy: 0.18.1
statsmodels: 0.6.1
xarray: None
IPython: 5.1.0
sphinx: 1.5.1
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2016.10
blosc: None
bottleneck: 1.2.0
tables: 3.2.2
numexpr: 2.6.1
matplotlib: 2.0.2
openpyxl: 2.4.1
xlrd: 1.0.0
xlwt: 1.2.0
xlsxwriter: 0.9.6
lxml: 3.7.2
bs4: 4.5.3
html5lib: None
httplib2: None
apiclient: None
sqlalchemy: 1.1.5
pymysql: None
psycopg2: None
jinja2: 2.9.4
boto: 2.45.0
pandas_datareader: None

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions