Skip to content

BUG: DataFrame.astype(dict) can cause column metadata to be lost #19920

Closed
@jschendel

Description

@jschendel

Code Sample, a copy-pastable example if possible

Setup:

In [2]: df = pd.DataFrame(data=np.random.randint(5, size=(3, 4)),
   ...:                   columns=pd.UInt64Index(range(500, 504), name='foo'))
   ...:

In [3]: df
Out[3]:
foo  500  501  502  503
0      4    4    2    1
1      0    2    3    1
2      1    4    0    0

In [4]: df.columns
Out[4]: UInt64Index([500, 501, 502, 503], dtype='uint64', name='foo')

Using .astype(dict) loses column metadata:

In [5]: df = df.astype({500: 'float64', 501: 'uint64'})

In [6]: df.columns
Out[6]: Int64Index([500, 501, 502, 503], dtype='int64')

Problem description

Column metadata is lost: the name has been removed and it has been cast from UInt64Index to Int64Index.

Expected Output

I'd expect the columns post-astype to be the same as pre-astype.

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugReshapingConcat, Merge/Join, Stack/Unstack, Explode

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions